Answer:
the picture is blurry sorry can't help cause I can't see the question
Write the equation of the cost
p stands for the cost per pear, a stands for the cost per apple
6p + 3a = 3.9
2p + 5a = 3.3
Solve the equation system
To solve the equation system, we work on eliminating variable p so we will find the number of a. To eliminate, we have to change the coefficient of p to the same number (i will change it to coefficient 6)
6p + 3a = 3.9 (multiply 1)
2p + 5a = 3.3 (multiply 3)
---------------------------------
6p + 3a = 3.9
6p + 15a = 9.9
-------------------- - (substract)
-12a = -6
a = -6/-12
a = 0.5
To find the cost per pear, subtitute the number of a to one of the equation
2p + 5a = 3.3
2p + 5(0.5) = 3.3
2p + 2.5 = 3.3
2p = 3.3 - 2.5
2p = 0.8
p = 0.4
The cost of one pear is $0.4
The equation form of a circle is (x - a)² + (y - b)² = r²
Equation 1:
x² - 4x + y² + 12y - 20 = 0 ⇒ use the completing the square method for x² - 4x and y² + 12y
x² - 4x = (x - 2)² - 4
y² + 12y = (y + 6)² - 36
Put them back together, we have
(x - 2)² - 4 + (y + 6)² - 36 - 20 = 0
(x - 2)² + (y + 6)² -4 - 36 - 20 = 0
(x - 2)² + (y + 6)² - 60 = 0
(x - 2)² + (y + 6)² = 60
Equation 2:
x² + y² + 6x - 8y - 10 = 0
(x² + 6x) + (y² - 8y) -10 = 0
(x + 3)² - 9 + (y - 4)² -16 - 10 = 0
(x + 3)² + (y - 4)² - 9 - 16 - 10 = 0
(x + 3)² + (y - 4)² - 35 = 0
(x + 3)² + (y - 4)² = 35
Equation 3:
3x² + 12x + 3y² +18y - 15 = 0
3 [x² + 4x + y² + 6y - 5] = 0
x² + 4x + y² + 6y - 5 = 0
(x² + 4x) + (y² + 6y) - 5 = 0
(x + 2)² - 4 + (y + 3)² - 9 - 5 = 0
(x + 2)² + (y + 3)² - 4 - 9 -5 = 0
(x + 2)² + (y + 3)² - 18 = 0
(x + 2)² + (y + 3)² = 18
Equation 4:
5x² + 5y² - 10x + 20y - 30 = 0
5 [x² + y² - 2x + 4y - 6] = 0
x² + y² - 2x + 4y - 6 = 0
(x² - 2x) + (y² + 4y) - 6 = 0
(x - 1)² - 2 + (y + 2)² - 4 - 6 =0
(x - 1)² + (y + 2)² - 2 - 4 - 6 = 0
(x - 1)² + (y + 2)² - 12 = 0
(x - 1)² + (y + 2)² = 12
Equation 5:
2x² + 2y² - 24x - 16y -8 = 0
2 [x² + y² - 12x - 8y - 4] = 0
x² + y² - 12x - 8y - 4 = 0
(x² - 12x) + (y² - 8y) - 4 = 0
(x - 6)² - 36 + (y - 4)² - 16 - 4 = 0
(x - 6)² + (y - 4)² -36 - 16 - 4 = 0
(x - 6)² + (y - 4)² - 56 = 0
(x - 6)² + (y - 4)² = 56
Equation 6:
x² + y² + 2x - 12y - 9 = 0
(x² + 2x) + (y² - 12y) - 9 = 0
(x + 1)² - 1 + (y - 6)² - 36 - 9 = 0
(x + 1)² + (y - 6)² - 1 - 36 - 9 = 0
(x + 1)² + (y - 6)² - 46 = 0
(x + 1)² + (y - 6)² = 46
Answer:
The answer to your question is 2x² + 3x + Remainder (17x - 7)/ ( 2x⁴ + 3x³ - 4x² + 5x - 7)
Step-by-step explanation:
2x² + 3x
x² - 4 2x⁴ + 3x³ - 4x² + 5x - 7
-2x⁴ + 4x²
0 + 3x³ + 0 + 5x
- 3x³ +12x
0 +17x - 7
Quotient = 2x² + 3x
Remainder = 17x - 7
Solution = 2x² + 3x + (17x - 7)/ ( 2x⁴ + 3x³ - 4x² + 5x - 7)
Process
1.- Divide the first term of the divident by the first term of the divisor and place the result above the first term of the divident.
2.- Multiply the result of the division (2x²) by the first term of the divisor and change the sign of the result.
3.- Multiply the result (2x²) by the second term of the divisor and place the result below the like term.
4.- Add the results.
5.- Continue with this process until the remainder be lower than the divisor.