1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oee [108]
2 years ago
10

What is the slope of a line perpendicular to line B?

Mathematics
2 answers:
dusya [7]2 years ago
7 0
The slope of a line perpendicular to line B would -1/2. This is because the slope of line B is 2 and whenever you’re finding a perpendicular slope you find the reciprocal of the original one. So the reciprocal of 2 is -1/2
aliina [53]2 years ago
5 0

Answer:

m = -2/5

Step-by-step explanation:

The first thing we need to do is find the slope of line B.

m = (y2 - y1) / (x2 - x1)

m = (5 - (-5)) / (3 - (-1))

m = 10 / 4

m = 2 1/2 or 5/2

The slope of a line perpendicular to line B will be the negative reciprocal of 5/2. Just flip the numerator and the denominator and add a minus sign:

5/2 → -2/5

You might be interested in
Please help asap! Worth 15 points
sdas [7]

Answer: the second one

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
“encontrar la integral indefinida y verificar el resultado mediante derivación”
Oliga [24]

I=\displaystyle\int\frac x{(1-x^2)^3}\,\mathrm dx

Haz la sustitución:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{y^3}=\frac1{4y^2}+C=\frac1{4(1-x^2)^2}+C

Para confirmar el resultado:

\dfrac{\mathrm dI}{\mathrm dx}=\dfrac14\left(-\dfrac{2(-2x)}{(1-x^2)^3}\right)=\dfrac x{(1-x^2)^3}

I=\displaystyle\int\frac{x^2}{(1+x^3)^2}\,\mathrm dx

Sustituye:

y=1+x^3\implies\mathrm dy=3x^2\,\mathrm dx

\implies I=\displaystyle\frac13\int\frac{\mathrm dy}{y^2}=-\frac1{3y}+C=-\frac1{3(1+x^3)}+C

(Te dejaré confirmar por ti mismo.)

I=\displaystyle\int\frac x{\sqrt{1-x^2}}\,\mathrm dx

Sustituye:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{\sqrt y}=-\frac12(2\sqrt y)+C=-\sqrt{1-x^2}+C

I=\displaystyle\int\left(1+\frac1t\right)^3\frac{\mathrm dt}{t^2}

Sustituye:

u=1+\dfrac1t\implies\mathrm du=-\dfrac{\mathrm dt}{t^2}

\implies I=-\displaystyle\int u^3\,\mathrm du=-\frac{u^4}4+C=-\frac{\left(1+\frac1t\right)^4}4+C

Podemos hacer que esto se vea un poco mejor:

\left(1+\dfrac1t\right)^4=\left(\dfrac{t+1}t\right)^4=\dfrac{(t+1)^4}{t^4}

\implies I=-\dfrac{(t+1)^4}{4t^4}+C

4 0
3 years ago
If the sum of the zereos of the quadratic polynomial is 3x^2-(3k-2)x-(k-6) is equal to the product of the zereos, then find k?
lys-0071 [83]

Answer:

2

Step-by-step explanation:

So I'm going to use vieta's formula.

Let u and v the zeros of the given quadratic in ax^2+bx+c form.

By vieta's formula:

1) u+v=-b/a

2) uv=c/a

We are also given not by the formula but by this problem:

3) u+v=uv

If we plug 1) and 2) into 3) we get:

-b/a=c/a

Multiply both sides by a:

-b=c

Here we have:

a=3

b=-(3k-2)

c=-(k-6)

So we are solving

-b=c for k:

3k-2=-(k-6)

Distribute:

3k-2=-k+6

Add k on both sides:

4k-2=6

Add 2 on both side:

4k=8

Divide both sides by 4:

k=2

Let's check:

3x^2-(3k-2)x-(k-6) \text{ with }k=2:

3x^2-(3\cdot 2-2)x-(2-6)

3x^2-4x+4

I'm going to solve 3x^2-4x+4=0 for x using the quadratic formula:

\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\frac{4\pm \sqrt{(-4)^2-4(3)(4)}}{2(3)}

\frac{4\pm \sqrt{16-16(3)}}{6}

\frac{4\pm \sqrt{16}\sqrt{1-(3)}}{6}

\frac{4\pm 4\sqrt{-2}}{6}

\frac{2\pm 2\sqrt{-2}}{3}

\frac{2\pm 2i\sqrt{2}}{3}

Let's see if uv=u+v holds.

uv=\frac{2+2i\sqrt{2}}{3} \cdot \frac{2-2i\sqrt{2}}{3}

Keep in mind you are multiplying conjugates:

uv=\frac{1}{9}(4-4i^2(2))

uv=\frac{1}{9}(4+4(2))

uv=\frac{12}{9}=\frac{4}{3}

Let's see what u+v is now:

u+v=\frac{2+2i\sqrt{2}}{3}+\frac{2-2i\sqrt{2}}{3}

u+v=\frac{2}{3}+\frac{2}{3}=\frac{4}{3}

We have confirmed uv=u+v for k=2.

4 0
2 years ago
Why are angles opposite each other when two lines cross called vertical angles?
Nezavi [6.7K]
They are called vertical angles because the definition of vertical is: <span>in a direction, or having an alignment, such that the top is directly above the bottom. The "angles opposite each other when two lines cross" match the definition.</span>
3 0
3 years ago
Natalie made blueberry muffins for a bake sale. Each muffin cost her about $0.25 to make. She spent $8.75 to make all of the muf
Inga [223]

Answer:

26.25

Step-by-step explanation:

she sold 35 muffins

8 0
2 years ago
Read 2 more answers
Other questions:
  • What is the probability of spinning different numbers when the spinner below is spun twice​
    10·1 answer
  • An angle measuring 32 degrees has a complement that measures (2x - 16)degrees. What is the value of x? (and the steps)
    14·1 answer
  • What is the value of p for they following triangular prism<br><br> Please help me!!!!!!!!!!!
    10·1 answer
  • Select the equivalent expression.
    10·1 answer
  • 9. A submarine dove 400 feet. It then
    11·1 answer
  • Graph the line.<br> y=<br> 2<br> -X+3<br> 3
    7·1 answer
  • Select the multiplication sentence that applies the commutative property of multiplication to the example.
    9·1 answer
  • The LA Dodgers hit the most home runs in 2014. The number of home runs accounted for 6% of the entire major league baseball home
    15·1 answer
  • Find the indicated angle measure or arc measure.
    11·1 answer
  • What is the value of this expression when a= 3 and b- -2? (3a^-2 b^6)/(2a^-1 b^5)^2
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!