Answer:
We can do it with envelopes with amounts $1,$2,$4,$8,$16,$32,$64,$128,$256 and $489
Step-by-step explanation:
- Observe that, in binary system, 1023=1111111111. That is, with 10 digits we can express up to number 1023.
This give us the idea to put in each envelope an amount of money equal to the positional value of each digit in the representation of 1023. That is, we will put the bills in envelopes with amounts of money equal to $1,$2,$4,$8,$16,$32,$64,$128,$256 and $512.
However, a little modification must be done, since we do not have $1023, only $1,000. To solve this, the last envelope should have $489 instead of 512.
Observe that:
- 1+2+4+8+16+32+64+128+256+489=1000
- Since each one of the first 9 envelopes represents a position in a binary system, we can represent every natural number from zero up to 511.
- If we want to give an amount "x" which is greater than $511, we can use our $489 envelope. Then we would just need to combine the other 9 to obtain x-489 dollars. Since
, by 2) we know that this would be possible.
Answer: 5
Step-by-step explanation:
The vertex of the function f(x) exists (1, 5), the vertex of the function g(x) exists (-2, -3), and the vertex of the function f(x) exists maximum and the vertex of the function g(x) exists minimum.
<h3>How to determine the vertex for each function is a minimum or a maximum? </h3>
Given:
and

The generalized equation of a parabola in the vertex form exists

Vertex of the function f(x) exists (1, 5).
Vertex of the function g(x) exists (-2, -3).
Now, if (a > 0) then the vertex of the function exists minimum, and if (a < 0) then the vertex of the function exists maximum.
The vertex of the function f(x) exists at a maximum and the vertex of the function g(x) exists at a minimum.
To learn more about the vertex of the function refer to:
brainly.com/question/11325676
#SPJ4
<u>well 8 divided by 4 is 2 and 11-8+2 is 5 and 5 times 4 is 20 so 20 is the answer
</u>
Chau’s height = c
c - 10 = 47
i think ?