Answer:
- 3.75 bags of ChowChow
- 0.75 bags of Kibble
Step-by-step explanation:
The constraints on protein, minerals, and vitamins give rise to the inequalities ...
40c +30k ≥ 150 . . . . . . required protein
20c +20k ≥ 90 . . . . . . required minerals
10c +30k ≥ 60 . . . . . . . required vitamins
And we want to minimize 10c +12k.
The graph shows the vertices of the feasible region in (c, k) coordinates. The one that minimizes cost is (c, k) = (3.75, 0.75).
To minimize cost, the daily feed should be ...
- 3.75 bags of ChowChow
- 0.75 bags of Kibble
Daily cost will be $46.50.
Answer:
Exactly one solution
Explanation:
The first step we need to take to find the answer is to find the value of y.
7(y+3)=5y+8
Expand the parentheses
7y+21=5y+8
Subtract both sides by 21
7y+21-21=5y+8-21
7y=5y-13
Subtract both sides by 5y
7y-5y=5y-13-5y
2y=-13
Divide both sides by 2
2y/2=-13/2
y=-6.5
Now, we plug y back into the original equation.
7(y+3)=5y+8
7(-6.5+3)=5(-6.5)+8
Expand the parentheses
-45.5+21=-32.5+8
-24.5=-24.5
Because both sides of the equation is equal and the equation is true, we can conclude that the equation has one solution.
I hope this helps!
F(x) = -4(x - 2)² + 2
f(x) = -4((x - 2)(x - 2)) + 2
f(x) = -4(x² - 2x - 2x + 4) + 2
f(x) = -4(x² - 4x + 4) + 2
f(x) = -4(x²) + 4(4x) - 4(4) + 2
f(x) = -4x² + 16x - 16 + 2
f(x) = -4x² + 16x - 14
-4x² + 16x - 14 = 0
x = <u>-16 +/- √(16² - 4(-4)(-14))</u>
2(-4)
x = <u>-16 +/- √(256 - 224)</u>
-8
x = <u>-16 +/- √(32)
</u> -8<u>
</u>x = <u>-16 +/- 5.66
</u> -8<u>
</u>x = <u>-16 + 5.66</u> x = <u>-16 - 5.66
</u> -8 -8<u>
</u>x = <u>-10.34</u> x = <u>-21.66</u>
-8 -8
x = 1.2925 x = 2.7075
f(x) = -4x² + 16x - 14
f(1.2925) = -4(1.2925)² + 16(1.2925) - 14
f(1,2925) = -4(1.67055625) + 20.68 - 14
f(1.2925) = -6.682225 + 20.68 - 14
f(1.2925) = 13.997775 - 14
f(1.2925) = -0.002225
(x, f(x)) = (1.2925, -0.002225)
or
f(x) = -4x² + 16x - 14
f(2.7075) = -4(2.7075)² + 16(2.7075) - 14
f(2.7075) = -4(7.33055625) + 43.32 - 14
f(2.7075) = -29.322225 + 43.32 - 14
f(2.7075) = 13.997775 - 14
f(2.7075) = -0.002225
(x, f(x)) = (2.7075, -0.002225)
--------------------------------------------------------------------------------------------
f(x) = 2(x - 2)² + 1
f(x) = 2((x - 2)(x - 2)) + 1
f(x) = 2(x² - 2x - 2x + 4) + 1
f(x) = 2(x² - 4x + 4) + 1
f(x) = 2(x²) - 2(4x) + 2(4) + 1
f(x) = 2x² - 8x + 8 + 1
f(x) = 2x² - 8x + 9
2x² - 8x + 9 = 0
x = <u>-(-8) +/- √((-8)² - 4(2)(9))
</u> <u />2(2)
x = <u>8 +/- √(64 - 72)</u>
4
x = <u>8 +/- √(-8)</u>
4
x = <u>8 +/- √(8 × (-1))</u>
4
x =<u> 8 +/- √(8)√(-1)</u>
4
x = <u>8 +/- 2.83i</u>
4
x = 2 +/- 1.415i
x = 2 + 1.415i x = 2 - 1.415i
f(x) = 2x² - 8x + 9
f(2 + 1.415i) = 2(2 + 1.415i)² - 8(2 + 1.415i) + 9
f(2 + 1.415i) = 2((2 + 1.415i)(2 + 1.415i)) - 16 - 11.32i + 9
f(2 + 1.415i) = 2(4 + 2.83i + 2.83i + 2.00225i²) - 16 - 11.32i + 9
f(2 + 1.415i) = 2(4 + 5.66i + 2.00225) - 16 - 11.32i + 9
f(2 + 1.415i) = 8 + 11.32i + 4.0045 - 16 - 11.32i + 9
f(2 + 1.415i) = 8 + 4.0045 - 16 + 9 + 11.32i - 11.32i
f(2 + 1.415i) = 12.0045 - 16 + 9
f(2 + 1.415i) = -3.9955 + 9
f(2 + 1.415i) = 5.0045
(x, f(x)) = (2 + 1.415i, 5.0045)
or
f(x) = 2x² - 8x + 9
f(2 - 1.415i) = 2(2 - 1.415i)² - 8(2 - 1.415i) + 9
f(2 - 1.415i) = 2((2 - 1.415i)(2 - 1.415i)) - 16 + 11.32i + 9
f(2 - 1.415i) = 2(4 - 2.83i - 2.83i + 2.00225i²) - 16 + 11.32i + 9
f(2 - 1.415i) = 2(4 - 5.66i + 2.00225) - 16 + 11.32i + 9
f(2 - 1.415i) = 8 - 11.32i + 4.0045 - 16 + 11.32i + 9
f(2 - 1.415i) = 8 + 4.0045 - 16 + 9 - 11.32i + 11.32i
f(2 - 1.415i) = 12.0045 - 16 + 9
f(2 - 1.145i) = -3.9955 + 9
f(2 - 1.415i) = 5.0045
(x, f(x)) = (2 - 1.415i, 5.0045)
--------------------------------------------------------------------------------------------
f(x) = -2(x - 4)² + 8
f(x) = -2((x - 4)(x - 4)) + 8
f(x) = -2(x² - 4x - 4x + 16) + 8
f(x) = -2(x² - 8x + 16) + 8
f(x) = -2(x²) + 2(8x) - 2(16) + 8
f(x) = -2x² + 16x - 32 + 8
f(x) = -2x² + 16x - 24
-2x² + 16x - 24 = 0
x = <u>-16 +/- √(16² - 4(-2)(-24))</u>
2(-2)
x = <u>-16 +/- √(256 - 192)</u>
-4
x = <u>-16 +/- √(64)</u>
-4
x = <u>-16 +/- 8</u>
-4
x = <u>-16 + 8</u> x = <u>-16 - 8</u>
-4 -4
x = <u>-8</u> x = <u>-24</u>
-4 -4
x = 2 x = 6
f(x) = -2x² + 16x - 24
f(2) = -2(2)² + 16(2) - 24
f(2) = -2(4) + 32 - 24
f(2) = -8 + 32 - 24
f(2) = 24 - 24
f(2) = 0
(x,f(x)) = (2, 0)
or
f(x) = -2x² + 16x - 24
f(6) = -2(6)² + 16(6) - 24
f(6) = -2(36) + 96 - 24
f(6) = -72 + 96 - 24
f(6) = 24 - 24
f(6) = 0
(x, f(x)) = (6, 0)
<u />
Answer:

Step-by-step explanation:

Distribute 2 through the parentheses


Hope I helped!
Best regards! :D