1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ede4ka [16]
4 years ago
10

Which equation provides the best estimate for 35.78 ÷ 12.31?

Mathematics
1 answer:
kobusy [5.1K]4 years ago
5 0
Estimate
<span>35.78 = 36
</span><span>12.31 = 12
so
36/12 = 3

answer
3</span>
You might be interested in
Y varies inversely with x. If y = 40 when x = 16, find x when y =-5.
AfilCa [17]
Y varies directly with x m eans
y=kx where k is constant

y=40
x=16
find k
40=k16
divide both sides by 16
5/2=k

y=5/2x

y=-5 find x
-5=5/2x
times 2/5 both sides to cancle fraciton (5/2 times 2/5=10/10=1)
-10/5=x
-2=x

x=-2
7 0
3 years ago
Prove-: sin5A = 5cos^4 A sinA - 10cos^2 A sin^3 A + sin^5 A
jeyben [28]
A=x\\\\sin5x=5cos^4xsinx-10cos^2xsin^3x+sin^5x\\\\L=sin(3x+2x)=sin3xcos2x+sin2xcos3x=(*)\\-------------------------------\\sin3x=sin(2x+x)=sin2xcosx+sinxcos2x\\=2sinxcosxcosx+sinx(cos^2x-sin^2x)\\=2sinxcos^2x+sinxcos^2x-sin^3x=3sinxcos^2x-sin^3x\\-------------------------------

sin3xcos2x=(3sinxcos^2x-sin^3x)(cos^2x-sin^2x)\\=3sinxcos^4x-3sin^3xcos^2x-sin^3xcos^2x+sin^5x\\=3sinxcos^4x-4sin^3xcos^2x+sin^5x\\-------------------------------

cos3x=cos(2x+x)=cos2xcosx-sin2xsinx\\=cosx(cos^2x-sin^2x)-2sinxcosxsinx\\=cos^3x-sin^2xcosx-2sin^2xcosx=cos^3x-3sin^2xcosx\\-------------------------------

sin2xcos3x=2sinxcosx(cos^3x-3sin^2xcosx)\\=2sinxcos^4x-6sin^3xcos^2x\\-------------------------------

&#10;(*)=3sinxcos^4x-4sin^3xcos^2x+sin^5x+2sinxcos^4x-6sin^3xcos^2x\\\\=5sinxcos^4x-10sin^3xcos^2x+sin^5x=R

=======================================\\\\sin(\alpha+\beta)=sin\alpha cos\beta+sin\beta cos\alpha\\\\cos(\alpha+\beta)=cos\alpha cos\beta-sin\alpha sin\beta\\\\sin2\alpha=2sin\alpha cos\alpha\\\\cos\alpha=cos^2\alpha-sin^2\alpha
5 0
3 years ago
Is the answer B or C
klio [65]

We will calculate it like this, We will make a right angle triangle by adding one new point called O for example, and O is located right under the point C, and on the right side of point D, so the coordinated for this point are O (8, -2). From there, length CD is calculated using the Pythagorean theorem, because we know that the CO = 4 and DO = 4, so:

CD^2 = CO^2 + DO^2

CD^2 = 4^2 + 4^2

DC^2 = 16 + 16

DC^2 = 32

DC = square root of 32 = square root of 16 * square root of 2

DC = 4 * square root of 2

The correct answer is B. 4*square root of 2.

6 0
3 years ago
Solve the above que no. 55
aleksandr82 [10.1K]

Answer:

Let \left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right), we proceed to prove the trigonometric expression by trigonometric identity:

1) \left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right) Given

2) \left(1+\frac{\cos^{2}A}{\sin^{2}A} \right)\cdot \left(1+\frac{\sin^{2}A}{\cos^{2}A} \right)   \tan A = \frac{1}{\cot A} = \frac{\sin A}{\cos A}

3) \left(\frac{\sin^{2}A+\cos^{2}A}{\sin^{2}A} \right)\cdot \left(\frac{\cos^{2}A+\sin^{2}A}{\cos^{2}A} \right)    

4) \left(\frac{1}{\sin^{2}A} \right)\cdot \left(\frac{1}{\cos^{2}A} \right)    \sin^{2}A+\cos^{2}A = 1

5) \frac{1}{\sin^{2}A\cdot \cos^{2}A}

6) \frac{1}{\sin^{2}A\cdot (1-\sin^{2}A)}    \sin^{2}A+\cos^{2}A = 1

7) \frac{1}{\sin^{2}A-\sin^{4}A} Result

Step-by-step explanation:

Let \left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right), we proceed to prove the trigonometric expression by trigonometric identity:

1) \left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right) Given

2) \left(1+\frac{\cos^{2}A}{\sin^{2}A} \right)\cdot \left(1+\frac{\sin^{2}A}{\cos^{2}A} \right)   \tan A = \frac{1}{\cot A} = \frac{\sin A}{\cos A}

3) \left(\frac{\sin^{2}A+\cos^{2}A}{\sin^{2}A} \right)\cdot \left(\frac{\cos^{2}A+\sin^{2}A}{\cos^{2}A} \right)    

4) \left(\frac{1}{\sin^{2}A} \right)\cdot \left(\frac{1}{\cos^{2}A} \right)    \sin^{2}A+\cos^{2}A = 1

5) \frac{1}{\sin^{2}A\cdot \cos^{2}A}

6) \frac{1}{\sin^{2}A\cdot (1-\sin^{2}A)}    \sin^{2}A+\cos^{2}A = 1

7) \frac{1}{\sin^{2}A-\sin^{4}A} Result

4 0
3 years ago
Select the graph that would represent the best presentation of the solution set for |z| &gt; (1/2).
xenn [34]
The absolute value of x is greater than 1/2, meaning that x is either greater than 1/2 or x is less than -1/2 (in this case, even though the numbers are decreasing or getting more negative, their absolute values are greater than 1/2). this is all i can tell you because you didnt give me any graphs. 
4 0
3 years ago
Read 2 more answers
Other questions:
  • sylvia is carrying two bags of potatos, bag A and bag B. the weight of bag B is 3 pounds more than twice the weight of both bags
    13·2 answers
  • Data was collected on the number of pets and the height of a random group of students. Identify the correlation you would expect
    13·1 answer
  • What is the 87th number of pi multiplied by 35 ?
    5·1 answer
  • Forty-seven percent of fish in a river are catfish. Imagine scooping out a simple random sample of 25 fish from the river and ob
    15·1 answer
  • Which verbal description can be represented by a linear function?
    9·2 answers
  • If you run a 10 km race in 43 minutes 30 seconds, what is your average time per mile? What is your average speed in mph? Hint: t
    5·1 answer
  • What is 2173÷3 please answer
    10·2 answers
  • Follow the steps to solve this equation. 3(2x + 6) – 4x = 2(5x – 2) + 6. solve for x
    5·2 answers
  • Convert this percent to a decimal.<br><br> 268.7%
    8·2 answers
  • At Memorial Hospital, 9 of the 12 babies
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!