Answer:
15b + 30
Step-by-step explanation:
By expansion (6 x 2.5b) + (6 x 5)
= 15b + 30
(5,-1) is located in quadrant IV......quadrant IV has (+ x, -y).....so any points that have (+ x, - y) are in this quadrant.
Example : (6,-3) is in this quadrant......(2,-4) is also in this quadrant.
So whoever has the house with (+ x, -y) is going to be in the same quadrant as the community center.
Answer:
no they don't one lies in quadrant 1 while the other is in quadrant 3
Step-by-step explanation:
Answer:
Equation of tangent plane to given parametric equation is:

Step-by-step explanation:
Given equation
---(1)
Normal vector tangent to plane is:


Normal vector tangent to plane is given by:
![r_{u} \times r_{v} =det\left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\cos(v)&sin(v)&0\\-usin(v)&ucos(v)&1\end{array}\right]](https://tex.z-dn.net/?f=r_%7Bu%7D%20%5Ctimes%20r_%7Bv%7D%20%3Ddet%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Chat%7Bi%7D%26%5Chat%7Bj%7D%26%5Chat%7Bk%7D%5C%5Ccos%28v%29%26sin%28v%29%260%5C%5C-usin%28v%29%26ucos%28v%29%261%5Cend%7Barray%7D%5Cright%5D)
Expanding with first row

at u=5, v =π/3
---(2)
at u=5, v =π/3 (1) becomes,



From above eq coordinates of r₀ can be found as:

From (2) coordinates of normal vector can be found as
Equation of tangent line can be found as:

Answer:
Statement 3
Step-by-step explanation:
<u>Statement 1:</u> For any positive integer n, the square root of n is irrational.
Suppose n = 25 (25 is positive integer), then

Since 5 is rational number, this statement is false.
<u>Statement 2:</u> If n is a positive integer, the square root of n is rational.
Suppose n = 8 (8 is positive integer), then

Since
is irrational number, this statement is false.
<u>Statement 3:</u> If n is a positive integer, the square root of n is rational if and only if n is a perfect square.
If n is a positive integer and square root of n is rational, then n is a perfect square.
If n is a positive integer and n is a perfect square, then square root of n is a rational number.
This statement is true.