Answer:
Option B: x > 0
Step-by-step explanation:
Option A is wrong because
will be 0. So, the inequality can't be divided by 0.
Option C is wrong because 1 will suffice this inequality. 
Option D is wrong because any value in the root has to be greater or equal to 0 (otherwise, it's imaginary number). -1 will give the latter root a value of root-(-3).
Leaving us with only option B, which is the right answer.
Answer:
11.25
Step-by-step explanation:
Answer: 8
Step-by-step explanation:
You divide 32 by 4 and get eight
Marcia dissolved 1 kg of salt in 3 litres of water.
Bobby dissolves 2 pounds of salt in 7 pints of water
2.11 pints = 1 litre
7 pints = 7/2.11
= 3.32 litre
1 pound =0.45 kg
2 pound = o.45*2 kg
= 0.9 kg
So we find that Bobby is dissolving 0.9kg of salt in 3.32 litre of water
Marcia is dissolving 1 kg of salt in 3 litres of water.
Answer:
1045.01 rounded to the nearest hundredth
Step-by-step explanation:
First, we can draw this out. The angle of depression is the angle formed by the object at the top and the line formed by the object at the top and the object at the bottom.
If the truck on the left is truck A and the truck on the right is truck B, with the helicopter being the circle on top, there is one 60 degree angle of depression and one 20 degree one. If we make a point at the point in the road the helicopter is straight above, and we connect the points, we can form two right triangles, as shown. If we can calculate the lengths of sides x and y, we can add them up to find the length between the two trucks.
Starting with side x, we know one angle and the side length adjacent to that angle. We want to find the length opposite that angle. One formula that encompasses this is tan(θ) = opposite/adjacent. Therefore, tan(60) = x/500
tan(60) = x/500
multiply both sides by 500 to isolate the x
tan(60) * 500 = x
x = 866.0254
Similarly, with side y, we can say that tan(20) = y/500 and
tan(20) * 500 = y
y= 181.9851
The distance between the two trucks can be shown as x+y, so x+y= 1045.01 rounded to the nearest hundredth