The answer is 32
Solution for 40 is what percent of 125:
40:125*100 =
( 40*100):125 =
4000:125 = 32
Now we have: 40 is what percent of 125 = 32
Question: 40 is what percent of 125?
Percentage solution with steps:
Step 1: We make the assumption that 125 is 100% since it is our output value.
Step 2: We next represent the value we seek with $x$x.
Step 3: From step 1, it follows that $100\%=125$100%=125.
Step 4: In the same vein, $x\%=40$x%=40.
Step 5: This gives us a pair of simple equations:
$100\%=125(1)$100%=125(1).
$x\%=40(2)$x%=40(2).
Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have
$\frac{100\%}{x\%}=\frac{125}{40}$
100%
x%=
125
40
Step 7: Taking the inverse (or reciprocal) of both sides yields
$\frac{x\%}{100\%}=\frac{40}{125}$
x%
100%=
40
125
$\Rightarrow x=32\%$⇒x=32%
Therefore, $40$40 is $32\%$32% of $125$125.
Answer:
Step-by-step explanation:
I'm pretty sure you are only meant to draw a rectangle of 34 I'm not sure tho.
Answer:
0.7823 = 78.23% probability that the response time is between 3 and 9 minutes.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean and standard deviation , the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 7.2 minutes and a standard deviation of 2.1 minutes.
This means that
For a randomly received emergency call, find the probability that the response time is between 3 and 9 minutes.
This is the pvalue of Z when X = 9 subtracted by the pvalue of Z when X = 3.
X = 9
has a pvalue of 0.8051
X = 3
has a pvalue of 0.0228
0.8051 - 0.0228 = 0.7823
0.7823 = 78.23% probability that the response time is between 3 and 9 minutes.
The answer is 1/25 because the time is each hour which goes on top and how much it changes goes every 25 miles per hour