Following the Hardy-Weinberg equilibrium theory, the frequency of the heter0zyg0us genotype is 2pq. In the exposed example, 2pq = 0.48.
<h3>
Hardy-Winberg equilibrium</h3>
The Hardy-Weinberg equilibrium theory states that the allelic frequencies in a locus are represented as p and q.
Assuming a diallelic gene,
→ The allelic frequencies are
- p is the frequency of the dominant allele,
- q is the frequency of the recessive allele.
→ The genotypic frequencies after one generation are
- p² (H0m0zyg0us dominant genotypic frequency),
- 2pq (Heter0zyg0us genotypic frequency),
- q² (H0m0zyg0us recessive genotypic frequency).
If a population is in H-W equilibrium, it gets the same allelic and genotypic frequencies generation after generation.
The addition of the allelic frequencies equals 1 ⇒ p + q = 1.
The sum of genotypic frequencies equals 1 ⇒ p² + 2pq + q² = 1
If the allele A has a frequency of 0.6, and the allele B has a frequency of 0.4, then the frequency of the heter0zyg0us genotype is
2pq = 2 x 0.6 x 0.4 =<u> 0.48</u>
You can learn more about the Hardy-Weinberg equilibrium at
brainly.com/question/3406634
By breaking down food particles gradually
True.
Why by Mimiwhatsup: Any organism can form organic substances from nutritional organic substances from simple inorganic substances such as carbon dioxide.
Answer:
Explanation:
Carbon monoxide (CO) is a colourless, non-irritant, odourless and tasteless toxic gas. It is produced by the incomplete combustion of carbonaceous fuels such as wood, petrol, coal, natural gas and kerosene. Its molecular weight is 28.01 g/mol, melting point −205.1 °C, boiling point (at 760 mmHg) −191.5 °C (−312.7 °F), density 1.250 kg/m3 at 0 °C and 1 atm and 1.145 kg/m3 at 25 °C and 1 atm, and relative density (air = 1) 0.967 (1,2). Its solubility in water at 1 atm is 3.54 ml/100 ml at 0 °C, 2.14 ml/100 ml at 25 °C and 1.83 ml/100 ml at 37 °C.
The molecular weight of carbon monoxide is similar to that of air (28.01 vs approximately 29). It mixes freely with air in any proportion and moves with air via bulk transport. It is combustible, may serve as a fuel source and can form explosive mixtures with air. It reacts vigorously with oxygen, acetylene, chlorine, fluorine and nitrous oxide. Carbon monoxide is not detectable by humans either by sight, taste or smell. It is only slightly soluble in water, blood serum and plasma; in the human body, it reacts with haemoglobin to form carboxyhemoglobin (COHb).
The relationship of carbon monoxide exposure and the COHb concentration in blood can be modelled using the differential Coburn-Forster-Kane equation (3), which provides a good approximation to the COHb level at a steady level of inhaled exogenous carbon monoxide.
Conversion factors
At 760 mmHg and 20 °C, 1ppm = 1.165 mg/m3 and 1 mg/m3 = 0.858 ppm; at 25 °C, 1 ppm = 1.145 mg/m3 and 1 mg/m3 = 0.873 ppm.