Type of conductors determines rate of flow of current
Answer:
below
Explanation: When a liquid changes into a gas vaporization has occurred. The process can either occur due to boiling or evaporation. Boiling occurs when the vapor pressure of the liquid is raised (by heating) to the point where it is equal to the atmospheric pressure.
Answer:
induced emf = 28.65 mV
Explanation:
given data
diameter = 7.3 cm
magnetic field = 0.61
time period = 0.13 s
to find out
magnitude of the induced emf
solution
we know radius is diameter / 2
radius = 7.3 / 2
radius = 3.65 m
so induced emf is dπ/dt = Adb/dt
induced emf = A × ΔB / Δt
induced emf = πr² × ΔB / Δt
induced emf = π (0..65)² × ( 0.61 - (-0.28)) / 0.13
induced emf = 0.0286538 V
so induced emf = 28.65 mV
Answer:multiplying will give us 7 significant figures and addition will give us 3 significant figures
Explanation:
After multiplying the two numbers they resulting value will give a value in its 4 decimal places because both given values are in 2 decimal places. The 4 dp is gotten by the addition of the decimal places of both given numbers (2+2) and
The result of its addition will give us a value in its 1dp and 3 significant figures since the addition of 23.68 and 4.12 will give us 27.8
Answer:

Explanation:
We first identify the elements of this simple harmonic motion:
The amplitude A is 8.8cm, because it's the maximum distance the mass can go away from the equilibrium point. In meters, it is equivalent to 0.088m.
The angular frequency ω can be calculated with the formula:

Where k is the spring constant and m is the mass of the particle.
Now, since the spring starts stretched at its maximum, the appropriate function to use is the positive cosine in the equation of simple harmonic motion:

Finally, the equation of the motion of the system is:
or
