Answer:
Minimum 8 at x=0, Maximum value: 24 at x=4
Step-by-step explanation:
Retrieving data from the original question:
![f(x)=x^{2}+8\:over\:[-1,4]](https://tex.z-dn.net/?f=f%28x%29%3Dx%5E%7B2%7D%2B8%5C%3Aover%5C%3A%5B-1%2C4%5D)
1) Calculating the first derivative

2) Now, let's work to find the critical points
Set this
0, belongs to the interval. Plug it in the original function

3) Making a table x, f(x) then compare
x| f(x)
-1 | f(-1)=9
0 | f(0)=8 Minimum
4 | f(4)=24 Maximum
4) The absolute maximum value is 24 at x=4 and the absolute minimum value is 8 at x=0.
<span>3x - 2y + 2y > -14 + 2y </span>
<span>3x + 0 > -14 + 2y </span>
<span>3x > -14 + 2y </span>
<span>3x + 14 > -14 + 14 + 2y </span>
<span>3x + 14 > 0 + 2y </span>
<span>3x + 14 > 2y </span>
<span>(3x + 14)/2 > 2y/2 </span>
<span>(3x + 14)/2 > y*(2/2) </span>
<span>(3x + 14)/2 > y*(1) </span>
<span>(3x + 14)/2 > y </span>
<span>y < (3x + 14)/2 </span>
<span>y < 3x/2 + 14/2 </span>
<span>y < 3x/2 + 7 </span>
<span>y < (3/2)*x + 7 </span>
<span>“y” is LESS THAN (3/2)*x + 7 </span>
<span>the slope intercept form of the inequality is: y < (3/2)*x + 7 </span>
<span>STEP 2: Temporarily change the inequality into an equation by replacing the < symbol with an = symbol. </span>
<span>y < (3/2)*x + 7 </span>
<span>y = (3/2)*x + 7 </span>
<span>STEP 3: Prepare the x-y table using the equation from Step 2. </span>
<span>Using the slope intercept form of the equation from Step 2, choose a value for x, and then compute y for at least three points. </span>
<span>Although you could plot the graph with just two sets of x-y coordinates, you should compute at least three different sets of coordinates points to ensure you have not made a mistake. All three x-y coordinates must lie on the same straight line. If they do not, you have made a mistake. </span>
<span>You can choose any value for x. </span>
<span>For example, (arbitrarily) choose x = -2 </span>
<span>If x = -2, </span>
<span>y = (3/2)*x + 7 </span>
<span>y = (3/2)*(-2) + 7 </span>
<span>y = 4 </span>
Answer:
The values of a, b, and c for the quadratic equation
a=3
b=-5
c=6
It would be...
(18 +28) divided by two
then take that and multiply it by the height - 5
the 6 in this equation doesn't matter because it is not the height of the shape
Five names for -214 are negative 214, drop of 214, minus 214, below 214, and taking away 214.