Check the picture below on the left-side.
we know the central angle of the "empty" area is 120°, however the legs coming from the center of the circle, namely the radius, are always 6, therefore the legs stemming from the 120° angle, are both 6, making that triangle an isosceles.
now, using the "inscribed angle" theorem, check the picture on the right-side, we know that the inscribed angle there, in red, is 30°, that means the intercepted arc is twice as much, thus 60°, and since arcs get their angle measurement from the central angle they're in, the central angle making up that arc is also 60°, as in the picture.
so, the shaded area is really just the area of that circle's "sector" with 60°, PLUS the area of the circle's "segment" with 120°.

![\bf \textit{area of a segment of a circle}\\\\ A_y=\cfrac{r^2}{2}\left[\cfrac{\pi \theta }{180}~-~sin(\theta ) \right] \begin{cases} r=radius\\ \theta =angle~in\\ \qquad degrees\\ ------\\ r=6\\ \theta =120 \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20segment%20of%20a%20circle%7D%5C%5C%5C%5C%0AA_y%3D%5Ccfrac%7Br%5E2%7D%7B2%7D%5Cleft%5B%5Ccfrac%7B%5Cpi%20%5Ctheta%20%7D%7B180%7D~-~sin%28%5Ctheta%20%29%20%20%5Cright%5D%0A%5Cbegin%7Bcases%7D%0Ar%3Dradius%5C%5C%0A%5Ctheta%20%3Dangle~in%5C%5C%0A%5Cqquad%20degrees%5C%5C%0A------%5C%5C%0Ar%3D6%5C%5C%0A%5Ctheta%20%3D120%0A%5Cend%7Bcases%7D)
Answer:
2
Step-by-step explanation:
On the first side it shows 5 ones. If you add 5 by 2 it’s 7. Then on the other side it shows 3 X’s. 3x2 is 6. Plus you add that 1 which makes it 7.
Hope this Helps :)
Pythagoras theoram? use it here!
That is,
H² = 15² + 4²
H² = 225 + 16
H = √241
H = 15.5
You should opt for 15.5
P.S: Best of luck for your test! ;))
Answer:

Step-by-step explanation:
Given that,
A rectangular prism is 4 inches long, 3 inches wide and 8 inches tall.
We need to find the volume of the rectangular prism. The formula for the volume of prism is given by :

So, the volume of the prism is equal to
.