Going by the data given, the best center of distribution to use in terms of mean and median is D) Mean for Bakery A because the data is symmetric; median for Bakery B because the data is not symmetric.
<h3>What centers of distribution should be used?</h3>
The mean should be used for data sets that are symmetric while the median should be used for data that is not symmetric.
The data is said to be symmetric when the mean and median are equal or very close.
Bakery A mean:
= (45 + 52 + 51 48 + 61 + 34 + 55 46) / 8
= 49
Bakery A median is 49.5
Bakery B mean:
= (48 42 + 25 45 + 57 + 10 + 43 + 46 ) / 8
= 39.5
Bakery B median is 44.
This shows that Bakery A data is symmetric so the best center of distribution to use is mean.
Bakery B is not symmetric so the center of distribution to use is median.
Find out more on symmetric data at brainly.com/question/7130507
#SPJ1
The value of 4 in 40 is 10 times less than the value of 4 in 400
Steps:
1. calculate the values of y at x=0,1,2. using y=5-x^2
2. calculate the areas of trapezoids (Bottom+Top)/2*height
3. add the areas.
1.
x=0, y=5-0^2=5
x=1, y=5-1^2=4
x=2, y=5-2^2=1
2.
Area of trapezoid 1 = (5+4)/2*1=4.5
Area of trapezoid 2 = (4+1)/2*1=2.5
Total area of both trapezoids = (4.5+2.5) = 7
Exact area by integration:
integral of (5-x^2)dx from 0 to 2
=[5x-x^3/3] from 0 to 2
=[5(2-0)-(2^3-0^3)/3]
=10-8/3
=22/3
=7 1/3, slight greater than the estimation by trapezoids.
Let's try plugging in some negative numbers. Let's do x=-1. 5+-1=4. So we know that if we put in a negative number for x, then n will be positive. But what if we do a number greater than -5, because 5+-5=0. So let's try x=-6. So 5+(-6)=-1. Hmm. So here it is. We know that any number under -5 will be positive and any number above -5 will be negative.