Answer:
0 ≤ t ≤ 5.
Step-by-step explanation:
In the function
,
is the independent variable. The domain of
is the set of all values of
that this function can accept.
In this case,
is defined in a real-life context. Hence, consider the real-life constraints on the two variables. Both time and volume should be non-negative. In other words,
.
.
The first condition is an inequality about
, which is indeed the independent variable.
However, the second condition is about
, the dependent variable of this function. It has to be rewritten as a condition about
.
.
Hence, t ≤ 5.
Combine the two inequalities to obtain the domain:
0 ≤ t ≤ 5.
Answer:
a) 
b)
c)
Step-by-step explanation:
Assuming the following question: Because of staffing decisions, managers of the Gibson-Marimont Hotel are interested in the variability in the number of rooms occupied per day during a particular season of the year. A sample of 20 days of operation shows a sample mean of 290 rooms occupied per day and a sample standard deviation of 30 rooms
Part a
For this case the best point of estimate for the population variance would be:

Part b
The confidence interval for the population variance is given by the following formula:
The degrees of freedom are given by:
Since the Confidence is 0.90 or 90%, the significance
and
, the critical values for this case are:
And replacing into the formula for the interval we got:
Part c
Now we just take square root on both sides of the interval and we got:
4. is A 15
5. is C 12
6. is B 4, 8, 12, 16
hope this helps :)
Answer:
A scatter plot to the right shows a very strong association.
Step-by-step explanation:
Because a scatter plot to the right shows that both variables are positive and they both increase, so it shows a strong association between those variables.