The general term of the given sequence is given by: 
<h3>
What is a Geometric Progression and what is its General Term?</h3>
Geometric progression refers to a special progression, or a sequence of numbers, in which each successive term is a fixed multiple of the term preceding it.
For a geometric progression having first term 'a', a constant ratio of the terms be 'r' and 'n' number of terms, then:
General Term of Geometric Progression(G.P.) =
, where r > 0.
Given: 
Here, for the given G.P., a = 5, r = 
Then, the general term =
<em>, </em>if the given G.P. has 'n' terms.
To learn more about geometric progressions, refer to the link: brainly.com/question/1509142
#SPJ4
The number of ratios from students to adults would be a/s
Answer:
a/b = 12
Step-by-step explanation:
2a -5b 1
------------- = -----
3a+2b 2
We can use cross products to get in the form of a /b
2(2a-5b) = 1(3a+2b)
Distribute
4a -10b=3a+2b
Get the a terms on the left and the b terms on the right
Subtract 3a from each side
4a-3a -10b=3a-3a+2b
a - 10b = 2b
Add 10b to each side
a-10b +10b = 2b+10b
a = 12 b
Divide each side by b
a/b = 12b/b
a/b = 12
Answer:
Step-by-step explanation:
156 rose
tu doit adtioner 12 foit 13
<h2 />
Answer:
The answer is 5200000
Step-by-step explanation: