Based on the information provided, it follows that there are 1,728 possible seating arrangements.
<h3>How can we find the number of possible arrangements?</h3>
To find the number of arrangements in this problem situation we must take into account the following key factors:
- Chris only has 1 possible seat.
- Jo has 2 possible seats.
- Dave, Alex, and Barb have 3 possible seats.
- Gareth, Fred, and Eddie have 3 possible seats.
- There are 4 other adults who do not have a preference in seats but have the possibility of using 4 seats.
According to the above, we must use the factorization of these numbers to find out the number of possibilities we have to seat them.
<h3>What is factoring?</h3>
A factorial function is a mathematical tool that is characterized by using the exclamation mark “!” behind a number. The factorial function is used to express that the number accompanied by the symbol must be multiplied by all positive integers between that number and 1.
In accordance with the above, in the problem situation that we must solve, we must use the factorial function with the possibilities of:
- Dave, Alex and Barb: 3! = 3 × 2 × 1 = 6
- Gareth, Fred and Eddie: 3! = 3 × 2 × 1 = 6
- Other 4 adults: 4! = 4 × 3 × 2 × 1 = 24
Subsequently, to calculate the number of total possibilities of the entire group we must multiply the possibilities of each group and individual as shown below:
- Number of possibilities = 1 × 2 × 6 × 6 × 24
- Number of possibilities = 1728
Learn more about the factorial function in: brainly.com/question/16674303
Answer:
When you are adding or subtracting a negative fraction, you usually want to consider the numerator as negative. The method is just the same, except now you may need to add negative or positive numerators. Example 1: ... To add the fractions with unlike denominators, rename the fractions with a common denominator.
Step-by-step explanation:
<em>I GOT YOU!!!!</em>
Answer:
P(z>1.3) = 0.9032
Step-by-step explanation:
We are given:
Mean = 5000
Standard deviation = 1000
x = 6300
P(x>6300)=?
z-score =?
z-score = x- mean/standard deviation
z-score = 6300 - 5000/1000
z- score = 1300/1000
z-score = 1.3
So, P(x>6300) = P(z>1.3)
Looking at the z-probability distribution table and finding value:
P(z>1.3) = 0.9032
So, P(z>1.3) = 0.9032
It would be 82 2/3 since 1/3 minis 2/3 would equal -1/3 you subtract that from 83 and get 82 2/3
Your answer is <u>12v-3.</u>
-
Steps:
1. Group Like Terms. (8v-3v+7v-3)
2. Add Similar Elements. (8v-3v+7v=12v)
3. Finished. (=12v-3)
-
Hope this helped :)