Answer:

And replacing we got:

So we are going to expect about 2,85 automobiles for this case.
Step-by-step explanation:
For this case we define the random variable X as "number of automobiles lined up at a Lakeside Olds dealer at opening time (7:30 a.m.)" and we know the distribution for X is given by:
X 1 2 3 4
P(X) 0.05 0.30 0.40 0.25
The expected value of a random variable X is the n-th moment about zero of a probability density function f(x) if X is continuous, or the weighted average for a discrete probability distribution, if X is discrete
For this case we can calculate the epected value with this formula:

And replacing we got:

So we are going to expect about 2,85 automobiles for this case.
Answer:
x = log(33)/(3·log(2))
Step-by-step explanation:
The relevant logarithm relation is ...
log(a^b) = b·log(a)
__
Taking the logarithm of both sides of your equation gives ...
2^(3x) = 33
log(2^(3x)) = log(33)
(3x)·log(2) = log(33)
The coefficient of x is 3·log(2). Dividing by that gives the value of x:
x = log(33)/(3·log(2))
x ≈ 1.51851/(3·0.301030) ≈ 1.6814647
Answer:
It's B, x^2=36
Step-by-step explanation:
Just took the quiz!!!
The answer is the bottom !hope this helps!
Answer:
23
Steps ig
((8x2) +2x(-3)))-(((-(-4)) x 2) +( 3 x( -7)) =23