Answer:
K = 51
Step-by-step explanation:
Since the triangles are similar, the angles are the same measure.
<K = <F
We can find angle F since the angles of a triangle add to 180
D + G + F = 180
59+70 +F = 180
Combine like terms
129+F = 180
Subtract 129 from each side
129-129+F = 180-129
F = 51
K = F = 51
Answer:
Option C. 6 square units
Step-by-step explanation:
we know that
Heron's Formula is a method for calculating the area of a triangle when you know the lengths of all three sides.
Let
a,b,c be the lengths of the sides of a triangle.
The area is given by:

where
p is half the perimeter
p=
we have
Triangle ABC has vertices at A(-2,1), B(-2,-3), and C(1,-2)
the formula to calculate the distance between two points is equal to

step 1
Find the distance AB



step 2
Find the distance BC



step 3
Find the distance AC



step 4



Find the half perimeter p
p=
Find the area




Answer:
147,000N
Step-by-step explanation:
A1= 2m^2
A2= 0.2m^2
F2= 14,700N
Required
F1, the applied force
Applying the formula
F1/A1= F2/A2
substute
F1/2=14700/0.2
2*14700= F1*0.2
29400= F1*0.2
F1= 29400/0.2
F1=147,000N
Hence, the applied force is 147,000N
I think... 1500
Step-by-step explanation:
multiply 30 and 25 then times 750 as your answer by 2 to get 1500
Step-by-step explanation:
<em>a</em><em>)</em><em> </em><em>Four </em><em>thousand</em><em> </em><em>five </em><em>hundred</em><em> </em><em>thirty-six.</em>
<em>b)</em><em> </em><em>arrange </em><em>in </em><em>descending</em><em> </em><em>order</em>
<em>3</em><em>4</em><em>5</em><em>6</em><em>.</em>
<em>c)</em><em> </em><em>since </em><em>we </em><em>have </em><em>to </em><em>make </em><em>odd </em><em>number</em><em> </em><em>therefore</em><em> </em><em>once </em><em>digit</em><em> </em><em>will </em><em>be </em><em>odd </em><em>,</em><em> </em><em>3</em><em> </em><em>(</em><em> </em><em>or </em><em>5</em><em> </em><em>too </em><em>)</em>
<em>so,</em><em> </em><em>the </em><em>number</em><em> </em><em>is </em><em>6</em><em>5</em><em>4</em><em>3</em><em>.</em>
<em>hope </em><em>this</em><em> answer</em><em> helps</em><em> you</em><em> dear</em><em>!</em>