Answer:
B *second one down.
Step-by-step explanation:
EF = 1/2(AB + CD)
x+5 = 1/2 (2x + 2 + 2x+4) Combine the like terms on the right.
x+5 = 1/2 (4x + 6) Remove the brackets.
x+5 = 1/2*4x + 1/2*6
x+5 = 2x + 3 Subtract x from both sides
5 = 2x-x + 3
5 = x + 3 Subtract 3 from both sides
5-3 = x
x = 2
EF = x + 5
EF = 2 + 5
EF = 7
The answer is B
Answer:
3 up, rest is 0
Step-by-step explanation:
The answer is 47.4 because u don't rounded because it's a zero
Answer:
translate: "Which of the following expressions is equivalent to (5 x 5 x 5 x 5)3?"
57???
Step-by-step explanation:
Answer:
a)
a1 = log(1) = 0 (2⁰ = 1)
a2 = log(2) = 1 (2¹ = 2)
a3 = log(3) = ln(3)/ln(2) = 1.098/0.693 = 1.5849
a4 = log(4) = 2 (2² = 4)
a5 = log(5) = ln(5)/ln(2) = 1.610/0.693 = 2.322
a6 = log(6) = log(3*2) = log(3)+log(2) = 1.5849+1 = 2.5849 (here I use the property log(a*b) = log(a)+log(b)
a7 = log(7) = ln(7)/ln(2) = 1.9459/0.6932 = 2.807
a8 = log(8) = 3 (2³ = 8)
a9 = log(9) = log(3²) = 2*log(3) = 2*1.5849 = 3.1699 (I use the property log(a^k) = k*log(a) )
a10 = log(10) = log(2*5) = log(2)+log(5) = 1+ 2.322= 3.322
b) I can take the results of log n we previously computed above to calculate 2^log(n), however the idea of this exercise is to learn about the definition of log_2:
log(x) is the number L such that 2^L = x. Therefore 2^log(n) = n if we take the log in base 2. This means that
a1 = 1
a2 = 2
a3 = 3
a4 = 4
a5 = 5
a6 = 6
a7 = 7
a8 = 8
a9 = 9
a10 = 10
I hope this works for you!!