Answer:
slope = 
Step-by-step explanation:
calculate the slope m using the slope formula
m = 
with (x₁, y₁ ) = (9, 6 ) and (x₂, y₂ ) = (4, 5 )
m =
=
= 
These are the steps, with their explanations and conclusions:
1) Draw two triangles: ΔRSP and ΔQSP.
2) Since PS is perpendicular to the segment RQ, ∠ RSP and ∠ QSP are equal to 90° (congruent).
3) Since S is the midpoint of the segment RQ, the two segments RS and SQ are congruent.
4) The segment SP is common to both ΔRSP and Δ QSP.
5) You have shown that the two triangles have two pair of equal sides and their angles included also equal, which is the postulate SAS: triangles are congruent if any pair of corresponding sides and their included angles are equal in both triangles.
Then, now you conclude that, since the two triangles are congruent, every pair of corresponding sides are congruent, and so the segments RP and PQ are congruent, which means that the distance from P to R is the same distance from P to Q, i.e. P is equidistant from points R and Q
Given:
Point F,G,H are midpoints of the sides of the triangle CDE.

To find:
The perimeter of the triangle CDE.
Solution:
According to the triangle mid-segment theorem, the length of the mid-segment of a triangle is always half of the base of the triangle.
FG is mid-segment and DE is base. So, by using triangle mid-segment theorem, we get




GH is mid-segment and CE is base. So, by using triangle mid-segment theorem, we get




Now, the perimeter of the triangle CDE is:



Therefore, the perimeter of the triangle CDE is 56 units.
Answer:
y = 15x + 8
Step-by-step explanation:
Hey there!
15x represents 15 times how many ever pizzas you order and 8 is for the delivery cost.
Hope this helps!