There are different kinds of math problem. There will be 11 rats in sewer #1.
<h3>What are word problem?</h3>
The term word problems is known to be problems that are associated with a story, math, etc. They are known to often vary in terms of technicality.
Lets take
sewer #1 = a
sewer #2 = b
sewer #3 = c
Note that A=B-9
So then you would have:
A=B-9
B=C- 5
A+B+C=56
Then you have to do a substitution so as to find C:
(B- 9) + (C-5) + C = 56
{ (C- 5)-9} + (C-5) + C = 56
3C - 19 = 56
3C = 75
B = C- 5
B = 25 - 5
Therefore, B = 20
A = B - 9
= 25 - 9
=11
Therefore, there are are 11 rats in sewer #1
Learn more about Word Problems from
brainly.com/question/21405634
Answer:
14
Step-by-step explanation:
Triangle=180
180-90 (RA) = 90
90-41= 39
(2x+11)=39
2x=28
x=14
Answer:
she would have to record a the amount of songs She did every week
Answer:
Step-by-step explanation:
Solutions, zeros, and roots of a polynomial are all the same exact thing and can be used interchangeably. When you factor a polynomial, you solve for x which are the solutions of the polynomial. Since, when you factor a polynomial, you do so by setting the polynomial equal to 0, by definition of x-intercept, you are finding the zeros (don't forget that x-intercepts exist where y is equal to 0). There's the correlation between zeros and solutions.
Since factoring and distributing "undo" each other (or are opposites), if you factor to find the zeros, you can distribute them back out to get back to the polynomial you started with. Each zero or solution is the x value when y = 0. For example, if a solution to a polynomial is x = 3, since that is a zero of the polynomial, we can set that statement equal to 0: x - 3 = 0. What we have then is a binomial factor of the polynomial in the form (x - 3). These binomial factors found from the solutions/zeros of the polynomial FOIL out to give you back the polynomial equation.