1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valentinak56 [21]
4 years ago
14

Can some body please help meeeee T^T

Mathematics
2 answers:
Nata [24]4 years ago
3 0

Answer:

Till tomorrow

TT Definition / TT Means

The definition of TT is "Telegrahic Transfer" or "Till tomorrow"

Step-by-step explanation:

pav-90 [236]4 years ago
3 0

Answer:

The answer is 5

Step-by-step explanation:

(50-10)=40/8=5

You might be interested in
Alejandra tiene una cubeta de 1 1/2 litros de pintura que le sobraron de su último mural. Para no cargar toda la cubeta, ella di
laiz [17]

Answer:

The correct answer is 6 jars can be used

Step-by-step explanation:

According to the given scenario, the calculation of the number of jars needed is shown below:

The 1 1 ÷ 2 liters means = 3 ÷ 2 liters

And, the paint is divided into 1 ÷4  liter jars

So, the number of jars needed is

= (3 ÷ 2) ÷ ( 1 ÷ 4)

= (4 × 3) ÷ 2

= 6 jars needed

Therefore the number of jars needed is 6 jars

4 0
3 years ago
Please help me to prove this!​
Sophie [7]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B = C                → A = C - B

                                          → B = C - A

Use the Double Angle Identity:     cos 2A = 2 cos² A - 1

                                             → (cos 2A + 1)/2 = cos² A

Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · 2 cos [(A - B)/2]

Use Even/Odd Identity: cos (-A) = cos (A)

<u>Proof LHS → RHS:</u>

LHS:                     cos² A + cos² B + cos² C

\text{Double Angle:}\qquad \dfrac{\cos 2A+1}{2}+\dfrac{\cos 2B+1}{2}+\cos^2 C\\\\\\.\qquad \qquad \qquad =\dfrac{1}{2}\bigg(2+\cos 2A+\cos 2B\bigg)+\cos^2 C\\\\\\.\qquad \qquad \qquad =1+\dfrac{1}{2}\bigg(\cos 2A+\cos 2B\bigg)+\cos^2 C

\text{Sum to Product:}\quad 1+\dfrac{1}{2}\bigg[2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-2B}{2}\bigg)\bigg]+\cos^2 C\\\\\\.\qquad \qquad \qquad =1+\cos (A+B)\cdot \cos (A-B)+\cos^2 C

\text{Given:}\qquad \qquad 1+\cos C\cdot \cos (A-B)+\cos^2C

\text{Factor:}\qquad \qquad 1+\cos C[\cos (A-B)+\cos C]

\text{Sum to Product:}\quad 1+\cos C\bigg[2\cos \bigg(\dfrac{A-B+C}{2}\bigg)\cdot \cos \bigg(\dfrac{A-B-C}{2}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =1+2\cos C\cdot \cos \bigg(\dfrac{A+(C-B)}{2}\bigg)\cdot \cos \bigg(\dfrac{-B-(C-A)}{2}\bigg)

\text{Given:}\qquad \qquad =1+2\cos C\cdot \cos \bigg(\dfrac{A+A}{2}\bigg)\cdot \cos \bigg(\dfrac{-B-B}{2}\bigg)\\\\\\.\qquad \qquad \qquad =1+2\cos C \cdot \cos A\cdot \cos (-B)

\text{Even/Odd:}\qquad \qquad 1+2\cos C \cdot \cos A\cdot \cos B\\\\\\.\qquad \qquad \qquad \quad =1+2\cos A \cdot \cos B\cdot \cos C

LHS = RHS: 1 + 2 cos A · cos B · cos C = 1 + 2 cos A · cos B · cos C   \checkmark

5 0
3 years ago
A botanical garden contains several cube-shaped planters. One planter
monitta

Answer:

hmmmmmmmmmmmmmmmmmmmm

8 0
3 years ago
Ben also participated. He fell down midway, and had to walk part of the distance. Still, he finished the distance! It took him e
sammy [17]

Answer:

0.56 m/s

Step-by-step explanation:

The average speed of a body tells how fast is the body moving; it is calculated as:

v=\frac{d}{t}

where

d is the distance covered

t is the time elapsed

In this problem, we don't know the distance covered by Ben. Therefore, we will assume that it is 1 km:

d = 1 km = 1000 m

The time elapsed to cover this distance is:

t=30 min \cdot 60 =1800 s

Therefore, Ben's average speed is:

v=\frac{1000}{1800}=0.56 m/s

3 0
3 years ago
Prove that: (secA-cosec A) (1+cot A +tan A) =( sec^2A/cosecA)-(Cosec^2A/secA)<br>​
Ksju [112]

Step-by-step explanation:

(\sec A - \csc A)(1 + \cot A + \tan A)

=(\sec A - \csc A)\left(1 + \dfrac{\cos A}{\sin A} + \dfrac{\sin A}{\cos A} \right)

=(\sec A - \csc A)\left(1 + \dfrac{\cos^2 A + \sin^2 A}{\sin A\cos A} \right)

=(\sec A - \csc A)\left(\dfrac{1 + \sin A \cos A}{\sin A \cos A} \right)

=\left(\dfrac{\frac{1}{\cos A} - \frac{1}{\sin A}+\sin A - \cos A}{\sin A\cos A}\right)

=\dfrac{\sin A - \sin A \cos^2A - \cos A + \cos A\sin^2A}{(\sin A\cos A)^2}

=\dfrac{\sin A(1 - \cos^2A) - \cos A (1 - \sin^2 A)}{(\sin A\cos A)^2}

=\dfrac{\sin^3A - \cos^3A}{\sin^2A\cos^2A}

=\dfrac{\sin A}{\cos^2A} - \dfrac{\cos A}{\sin^2A}

=\left(\dfrac{1}{\cos A}\right)\left(\dfrac{\sin A}{1}\right) - \left(\dfrac{1}{\sin^2A}\right) \left(\dfrac{\cos A}{1}\right)

=\sec^2A\csc A -  \csc^2A\sec A

5 0
3 years ago
Other questions:
  • Need help asap plzzz
    8·2 answers
  • Write an equation in slope intercept form given two points: (3,1),(0,10)
    11·1 answer
  • Pleasee helppp.any good math student​
    11·2 answers
  • Graph each equation y=7x-7<br><img src="https://tex.z-dn.net/?f=y%20%3D%207x%20-%207" id="TexFormula1" title="y = 7x - 7" alt="y
    7·1 answer
  • Which expression is equivalent to 7(2k)?
    13·1 answer
  • Create a quadratic equation in one variable of the form ax^2+bx+c=0 that meets the following criteria. A=1, b=0 , c=-100. 20 poi
    13·1 answer
  • 5x - 2 - 9<br> x + y = -3
    7·1 answer
  • Ground beef is on sale for $3.05 per pound. Gretel buys 80 ounces of ground beef. How much does she owe the butcher?
    8·2 answers
  • What is the area of the circle? round the answer to the decimal places. 39ft
    15·1 answer
  • The graphs below have the same shape. What is the equation of the blue<br> graph?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!