1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pickupchik [31]
3 years ago
9

HELPPP PLEASEEEEE!!!!!

Mathematics
2 answers:
kari74 [83]3 years ago
8 0
The answer is 51. hope this helped :)

Flauer [41]3 years ago
4 0

Answer:

like 60 or something

Step-by-step explanation:

You might be interested in
Find the radius of the circle. The center of the circle is (2, -3) and a point that lies on the circle is (-1, -2).
kirill [66]

Answer:

\displaystyle r = \sqrt{10}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)

<u>Geometry</u>

  • Definition of a radius - the center of a circle to <em>any</em> point to the circumference

<u>Algebra II</u>

  • Distance Formula: \displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Step-by-step explanation:

<u>Step 1: Define</u>

Center (2, -3) → x₁ = 2, y₁ = -3

Circumference point (-1, -2) → x₂ = -1, y₂ = -2

<em>In this case, the distance d from the center to the circumference point would be the radius r of the circle.</em>

<u>Step 2: Find Radius </u><em><u>r</u></em>

  1. [Distance Formula] Define equation [Radius]:                                               \displaystyle r = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}
  2. Substitute in points [Radius]:                                                                         \displaystyle r = \sqrt{(-1-2)^2+(-2--3)^2}
  3. [Radius] [√Radical] (Parenthesis) Simplify:                                                     \displaystyle r = \sqrt{(-1-2)^2+(-2+3)^2}
  4. [Radius] [√Radical] (Parenthesis) Subtract/Add:                                           \displaystyle r = \sqrt{(-3)^2+(1)^2}
  5. [Radius] [√Radical] Evaluate exponents:                                                       \displaystyle r = \sqrt{9+1}
  6. [Radius] [√Radical] Add:                                                                                 \displaystyle r = \sqrt{10}
6 0
3 years ago
Really need help <br><br> the first right answer will get brainliest :)
Yuri [45]

Answer:

Step-by-step explanation:

meow WOOF WOOF

7 0
3 years ago
What is the location of the asymptote of this exponential function? Answer with an equation.
zloy xaker [14]

Answer:

y=0

Step-by-step explanation:

The asymptote of exponential equations is where is plateaus/flattens out. it will never actually touch it. Here it flattens out on the y-axis.

5 0
3 years ago
Find modulus and principle argument of compiles numbers Z=5/2(cos300+isin300)
Paul [167]

z = \frac{5}{2}(\cos(300) + i\sin(300)) = \frac{5}{2}(\frac{1}{2} - i\frac{\sqrt{3}}{2})\\|z| = \sqrt{(\frac{5}{4})^2 + (\frac{5\sqrt{3}}{4})^2} = \sqrt{\frac{25}{16} + \frac{75}{16}} = \sqrt{\frac{100}{16}} = \frac{10}{4} = \frac{5}{2}

7 0
3 years ago
Please help me with this
xz_007 [3.2K]

Answer:

b= -1.6

When you do inverse operations, (-1)-0.6= -1.6

8 0
4 years ago
Read 2 more answers
Other questions:
  • Which statement is true regarding the functions on the
    9·1 answer
  • The odds of winning a race are 18:13. what is the probability of winning the race? Show your work.
    8·1 answer
  • Write an algebraic equation twice a number increased by 10 is 50
    15·1 answer
  • How many half dollars in $75
    9·1 answer
  • If two lines intersect, then the vertical angles formed must be_____________ Choices are: both acute angles. both equal in measu
    11·2 answers
  • Classify each triangle by its angles and sides​
    15·1 answer
  • -PLEASE HURRY
    13·1 answer
  • 7. Of the Americans
    7·1 answer
  • What is another way to write the absolute value inequality lpl&lt;12?
    15·1 answer
  • A landscaper wants to increase the size of one of his square gardens. The garden measures 8 feet on each side. The landscaper
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!