For the first one the nth term is 9n - 8 so the 10th term is 9x10 - 8 = 90-8 = 82
For the second one the nth term is ⅓n + ⅓ so the 11th term is ⅓x11 +⅓ = 3.9999 = 4
9514 1404 393
Answer:
a) w(4w-15)
b) w²
c) w(4w -15) = w²
d) w = 5
e) 5 by 5
Step-by-step explanation:
a) If w is the width, and the length is 15 less than 4 times the width, then the length is 4w-15. The area is the product of length and width.
A = w(4w -15)
__
b) If w is the side length, the area of the square is (also) the product of length and width:
A = w²
__
c) Equating the expressions for area, we have ...
w(4w -15) = w²
__
d) we can subtract the right side to get ...
4w² -15w -w² = 0
3w(w -5) = 0
This has solutions w=0 and w=5. Only the positive solution is sensible in this problem.
The side length of the square is 5 units.
__
e) The rectangle is 5 units wide, and 4(5)-15 = 5 units long.
The rectangle and square have the same width and the same area, so the rectangle must be a square.
|-8| - (5 + 2)2
8-(7)2
8-14= -6
Follow order of operations
Find u, v , u , v , and d(u, v) for the given inner product defined on Rn. u = (0, −4), v = (5, 3), u, v = 3u1v1 + u2v2
tigry1 [53]
Answer:


Step-by-step explanation:
We are given that inner product defined on 

u=(0,-4),v=(5,3)
We have to find the value of <u,v> and d(u,v)
We have 
Substitute the value then we get

Now, 
Using this formula we get

