It's 77.472 , but since you probably need too round it will be 77.5
Comment if you want me to give you the step by step thank you
Answer:
<u><em>F(x)= 5*[
+ (a*b)*
+ a*b*x + C.</em></u>
Step-by-step explanation:
<u><em>First step we aplicate distributive property to the function.</em></u>
<u><em>5*(x+a)*(x+b)= 5*[
+x*b+a*x+a*b]</em></u>
<u><em>5*[
+x*(b+a)+a*b]= f(x), where a, b are constant and a≠b</em></u>
<u><em>integrating we find ⇒∫f(x)*dx= F(x) + C, where C= integration´s constant</em></u>
<u><em>∫^5*[
+x*(a+b)+a*b]*dx, apply integral´s property</em></u>
<u><em>5*[∫
dx+∫(a*b)*x*dx + ∫a*b*dx], resolving the integrals </em></u>
<u><em>5*[
+ (a*b)*
+ a*b*x</em></u>
<u><em>Finally we can write the function F(x)</em></u>
<u><em>F(x)= 5*[
+ (a*b)*
+ a*b*x ]+ C.</em></u>
Answer:
<u>Part 1: C. $3,159.30</u>
<u>Part 2. C. –5; –135; –10,935</u>
Step-by-step explanation:
Part 1:
Price of the boat = $ 16,600
Depreciation rate = 14% = 0.14
Time of utilization of the boat = 11 years
Price of the boat after 11 years = Original price * (1 - Depreciation rate)^Time of utilization of the boat
Price of the boat after 11 years = 16,600 * (1 - 0.14)¹¹
Price of the boat after 11 years = 16,600 * 0.1903
<u>Price of the boat after 11 years = $ 3,159.30</u>
Part 2:
Let's find out the first term of the sequence given:
A(1) = -5 * 3¹⁻¹
A(1) = -5 * 1
A(1) = -5
Let's find out the fourth term of the sequence given:
A(4) = -5 * 3⁴⁻¹
A(4) = -5 * 3³
A(4) = -5 * 27
A(4) = -135
Let's find out the eighth term of the sequence given:
A(8) = -5 * 3⁸⁻¹
A(8) = -5 * 3⁷
A(8) = -5 * 2,187
A(8) = -10,935
Old price: p1 = $ 3.90;
New price: p2 = $ 3.40.
The percentual decrease is given by
d(%) = [ (p2 - p1) / p1 ] * 100 %
d(%) = [ (3.40 - 3.90) / 3.90 ] * 100 %
d(%) = [ - 0.50 / 3.90 ] * 100 %
d(%) = - 0.128 * 100 %
d(%) = - 12.8 % (approximately)
So the price fell 12.8 % approximately.
I hope this helps. =)