Answer: (2,2)
Step-by-step explanation:
It is where the two lines intersect.
Formula for slope: y2-y1/x2-x1
Plug in values.
3-8/-4-(-7)= -5/3 = slope
42-1/36-12=41/24=slope
The computer regression output includes the R-squared values, and adjusted R-squared values as well as other important values
a) The equation of the least-squares regression line is 
b) The correlation coefficient for the sample is approximately 0.351
c) The slope gives the increase in the attendance per increase in wins
Reasons:
a) From the computer regression output, we have;
The y-intercept and the slope are given in the <em>Coef</em> column
The y-intercept = 10835
The slope = 235
The equation of the least-squares regression line is therefore

b) The square of the correlation coefficient, is given in the table as R-sq = 12.29% = 0.1229
Therefore, the correlation coefficient, r = √(0.1229) ≈ 0.351
The correlation coefficient for the sample, r ≈ <u>0.351</u>
c) The slope of the least squares regression line indicates that as the number of attending increases by 235 for each increase in wins
Learn more here:
brainly.com/question/2456202
Answer:
Actually it's not polygon. it's a nonagon. With r=8.65mm″, the law of cosines gives us side a:
a=√{b²+c²−2bc×cos40°}
a=√{149.645−149.645cos40°}
Area Nonagon = (9/4)a²cos40°
=9/4[149.645−149.645cos40°]cot20°
=336.70125[1−cos(40°)]cot(20°)
Applying an identity for the cos(40°) does not get us very far…
= 336.70125[1−(cos2(20°)−1)]cot(20°)
= 336.70125[2−cos2(20°)]cot(20°)
= 336.70125[2−(1−sin2(20°))]cot(20°)
= 336.70125[1+sin2(20°)]cos(20°)sin(20°)
= 336.70125[cot(20°)+sin(20°)cos(20°)]mm²