1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sasho [114]
3 years ago
12

HELP AS SOON AS POSSIBLE!!

Mathematics
1 answer:
Viktor [21]3 years ago
6 0
The answer is 114 degrees. Hope i could help
You might be interested in
What is the volume of the solid figure?<br> Enter your answer in the box.<br><br> Please help..
Gre4nikov [31]

Answer:

188

Step-by-step explanation:

10*5*4 - 6*2

5 0
3 years ago
What is the length of the line?<br> Choose 1 answer:<br> PLS HELP! WILL GIVE BRAINLIEST!
Sergeeva-Olga [200]

Answer:

6 ?

Step-by-step explanation:

5 0
3 years ago
PLEASEE I NEED HELP I NEED IT BY TOMORROW!!! <br> Write as a polynomial: (7m+3)(2m–1)–2m(7m–1)
VladimirAG [237]
I think the answer is
-14m^2 + 15m - 3

(The ^2 is squared)
8 0
3 years ago
(x-6)^2+(y+5)^2=212 what is the center of the circle?
madam [21]
The circle equation is in the format (x – h)2 + (y – k)2 = r2, with the center being at the point (h, k) and the radius being "r". 
Therefore the center is: (6,-5)
4 0
3 years ago
7(x + y) ex2 − y2 dA, R where R is the rectangle enclosed by the lines x − y = 0, x − y = 7, x + y = 0, and x + y = 6
Anastasy [175]

Answer:

\int\limits {\int\limits_R {7(x + y)e^{x^2 - y^2}} \, dA = \frac{1}{2}e^{42}  -\frac{43}{2}

Step-by-step explanation:

Given

x - y = 0

x - y = 7

x + y = 0

x + y = 6

Required

Evaluate \int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA

Let:

u=x+y

v =x - y

Add both equations

2x = u + v

x = \frac{u+v}{2}

Subtract both equations

2y = u-v

y = \frac{u-v}{2}

So:

x = \frac{u+v}{2}

y = \frac{u-v}{2}

R is defined by the following boundaries:

0 \le u \le 6  ,  0 \le v \le 7

u=x+y

\frac{du}{dx} = 1

\frac{du}{dy} = 1

v =x - y

\frac{dv}{dx} = 1

\frac{dv}{dy} = -1

So, we can not set up Jacobian

j(x,y) =\left[\begin{array}{cc}{\frac{du}{dx}}&{\frac{du}{dy}}\\{\frac{dv}{dx}}&{\frac{dv}{dy}}\end{array}\right]

This gives:

j(x,y) =\left[\begin{array}{cc}{1&1\\1&-1\end{array}\right]

Calculate the determinant

det\ j = 1 * -1 - 1 * -1

det\ j = -1-1

det\ j = -2

Now the integral can be evaluated:

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA becomes:

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \int\limits^6_0 {\int\limits^7_0 {7ue^{x^2 - y^2}} \, *\frac{1}{|det\ j|} * dv\ du

x^2 - y^2 = (x + y)(x-y)

x^2 - y^2 = uv

So:

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \int\limits^6_0 {\int\limits^7_0 {7ue^{uv}} *\frac{1}{|det\ j|}\, dv\ du

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \int\limits^6_0 {\int\limits^7_0 {7ue^{uv}} *|\frac{1}{-2}|\, dv\ du

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \int\limits^6_0 {\int\limits^7_0 {7ue^{uv}} *\frac{1}{2}\, dv\ du

Remove constants

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0 {\int\limits^7_0 {ue^{uv}} \, dv\ du

Integrate v

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0  \frac{1}{u} * {ue^{uv}} |\limits^7_0  du

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0  e^{uv} |\limits^7_0  du

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0  [e^{u*7} -   e^{u*0}]du

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0  [e^{7u} -   1]du

Integrate u

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * [\frac{1}{7}e^{7u} -   u]|\limits^6_0

Expand

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * ([\frac{1}{7}e^{7*6}  - 6) -(\frac{1}{7}e^{7*0} -  0)]

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * ([\frac{1}{7}e^{7*6}  - 6) -\frac{1}{7}]

Open bracket

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * [\frac{1}{7}e^{7*6}  - 6 -\frac{1}{7}]

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * [\frac{1}{7}e^{7*6}  -\frac{43}{7}]

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * [\frac{1}{7}e^{42}  -\frac{43}{7}]

Expand

\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{1}{2}e^{42}  -\frac{43}{2}

3 0
3 years ago
Other questions:
  • The length of a rectangle is 8 cm longer than twice the width. If the perimeter is 34 cm, find the dimensions of the rectangle.
    7·1 answer
  • Construct a​ 95% confidence interval for the population​ mean, mu. Assume the population has a normal distribution. A sample of
    12·1 answer
  • A, B, and C are collinear, and B is between A and C. The ratio of AB to AC is 1:4. If A is at (-7,-8) and B is at (-3,-5) what a
    11·2 answers
  • 10.1022 rounded to the nearest hundredth​
    7·1 answer
  • Help me write this two numbers in words<br> 1,328,800,16<br> 15,802
    10·1 answer
  • Someone plz help:)))))
    14·1 answer
  • Solve. 4 – d &lt; 4 + d<br> d &gt; 8<br><br> d &gt; 0<br><br> d &gt; –8<br><br> d &gt; –4
    11·1 answer
  • A desk is on sale for $380, which is 20% off the original price. Which equation can be used to determine the
    12·1 answer
  • Choose the correct simplification of the expression 2 b over c all to the power of 3.
    9·1 answer
  • What is the point-slope form of line with slope -3 that contains the point<br> (10,-1)?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!