We havep(X)=eβ0+β1X1+eβ0+β1X⇔eβ0+β1X(1−p(X))=p(X),p(X)=eβ0+β1X1+eβ0+β1X⇔eβ0+β1X(1−p(X))=p(X),which is equivalent top(X)1−p(X)=eβ0+β1X.p(X)1−p(X)=eβ0+β1X.
To use the Bayes classifier, we have to find the class (kk) for whichpk(x)=πk(1/2π−−√σ)e−(1/2σ2)(x−μk)2∑Kl=1πl(1/2π−−√σ)e−(1/2σ2)(x−μl)2=πke−(1/2σ2)(x−μk)2∑Kl=1πle−(1/2σ2)(x−μl)2pk(x)=πk(1/2πσ)e−(1/2σ2)(x−μk)2∑l=1Kπl(1/2πσ)e−(1/2σ2)(x−μl)2=πke−(1/2σ2)(x−μk)2∑l=1Kπle−(1/2σ2)(x−μl)2is largest. As the log function is monotonally increasing, it is equivalent to finding kk for whichlogpk(x)=logπk−(1/2σ2)(x−μk)2−log∑l=1Kπle−(1/2σ2)(x−μl)2logpk(x)=logπk−(1/2σ2)(x−μk)2−log∑l=1Kπle−(1/2σ2)(x−μl)2is largest. As the last term is independant of kk, we may restrict ourselves in finding kk for whichlogπk−(1/2σ2)(x−μk)2=logπk−12σ2x2+μkσ2x−μ2k2σ2logπk−(1/2σ2)(x−μk)2=logπk−12σ2x2+μkσ2x−μk22σ2is largest. The term in x2x2 is independant of kk, so it remains to find kk for whichδk(x)=μkσ2x−μ2k2σ2+logπkδk(x)=μkσ2x−μk22σ2+logπkis largest.
ng expression
∫0.950.0510dx+∫0.050(100x+5)dx+∫10.95(105−100x)dx=9+0.375+0.375=9.75.∫0.050.9510dx+∫00.05(100x+5)dx+∫0.951(105−100x)dx=9+0.375+0.375=9.75.So we may conclude that, on average, the fraction of available observations we will use to make the prediction is 9.75%9.75%.res. So when p→∞p→∞, we havelimp→∞(9.75%)p=0.
Answer:
The length, in feet, of the side of the garden that is against the wall is(60 - x - CD) ft.
Step-by-step explanation:
Consider the diagram below.
The wall is labelled as AD, the side perpendicular to the wall is labelled as AB and the side against the wall is labelled as CB.
It is provided that the rectangular garden is enclosed by 60 feet of fencing on three sides.
That is,
AB + CB + CD = 60 ft.
⇒ x + CB + CD = 60 ft.
Then the length, in feet, of the side of the garden that is against the wall is:
x + CB + CD = 60 ft.
⇒ CB = (60 - x - CD) ft.
Answer:
I think it is 96.76 cm
Step-by-step explanation:
Correct me if I am wrong
Answer:
The mean ( average ) is 7.54
Step-by-step explanation:
Trace several round objects onto the grid on Math Masters, page 436