Answer:
<u>Alejandro went to 8 matinee shows and 4 evening shows.</u>
<u>Our system of equations:</u>
<u>x + y = 12</u>
<u>7x + 12y = 104</u>
Correct statement and question:
Alejandro loves to go to the movies. He goes both at night and during the day. The cost of a matinee is 7 dollars. The cost of an evening show is 12 dollars.
Alejandro went to see a total of 12 movies and spent $ 104. How many of each type of movie did he attend? Write a system of equations.
Source:
Previous question that can be found at brainly
Step-by-step explanation:
Step 1:
Let x to represent the number of matinee shows Alejandro went to.
Let y to represent the number of evening shows Alejandro went to.
Now, let's write our system of equations:
x + y = 12
7x + 12y = 104
*********************
x = 12 - y
*********************
7 (12 - y) + 12y = 104
84 - 7y + 12y = 104
5y = 104 - 84
5y = 20
y = 20/5
<u>y = 4 ⇒ x = 12 - 4 = 8</u>
<u>Alejandro went to 8 matinee shows and 4 evening shows.</u>
A suitable calculator shows the score of
46.0 separates the bottom 26% from the top 74%.
Hey there,
Answer: 75,431
Hope this helps :D
~Top♥
Answer:
$47.70
Step-by-step explanation:
60.00 x .25 = 15 ( so $15.00 off the shoes )
60.00-15.00 = 45.00
45.00 x .06 = 2.70 (2.70 is your sales tax so add that to you sale price )
$45.00 + $2.70 =$47.70 Total
Answer:
x = - 2, x = 6
Step-by-step explanation:
Given f(x) = 18 we require to solve
3 | x - 2 | + 6 = 18 ( subtract 6 from both sides )
3 | x - 2 | = 12 ( divide both sides by 3 )
| x - 2 | = 4
The absolute value function always returns a positive value, however, the expression inside can be positive or negative, thus
x - 2 = 4 ( add 2 to both sides )
x = 6
OR
- (x - 2) = 4
- x + 2 = 4 ( subtract 2 from both sides )
- x = 2 ( multiply both sides by - 1 )
x = - 2
As a check substitute these values into the left side of the equation and if equal to the right side then they are the solutions
x = 6 → 3|6 - 2| + 6 = 3|4| + 6 = 3(4) + 6 = 12 + 6 = 18 ← True
x = - 2 → 3|- 2 - 2| + 6 = 3|-4| + 6 = 3(4) + 6 = 12 + 6 = 18 ← True
Hence solutions are x = - 2, x = 6