1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MariettaO [177]
3 years ago
9

The table shows the electric current produced by a solar cell in different amounts of sunlight (light intensity). Answer the que

stions using the data. I only need help on 5 and 6

Mathematics
2 answers:
AnnZ [28]3 years ago
4 0
Answer: In the absence of light, you could predict the current to be 0. This makes sense, because if there is no light then the solar cell won't work. Also, you can see that the data is heading towards 0.

When the light intensity is 1000, you could predict the current to be at about 100. Following the pattern in the data, it seems like you divide the light intensity by 10 to get the current. You could also graph the points.
aalyn [17]3 years ago
3 0

Answer:

Step-by-step explanation:

how to solve it

You might be interested in
5 + 2n2 when n = 3. <br><br> (The 2 after the n is an exponent)
Pani-rosa [81]

Answer:

23

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
How do you solve this? Thank you
V125BC [204]
2)

a)

\bf a^{\frac{{ n}}{{ m}}} \implies  \sqrt[{ m}]{a^{ n}} \qquad \qquad&#10;\sqrt[{ m}]{a^{ n}}\implies a^{\frac{{ n}}{{ m}}}\\\\&#10;-------------------------------\\\\&#10;(4x^5\cdot x^{\frac{1}{3}})+(2x^4\cdot x^{\frac{1}{3}})-(7x^3\cdot x^{\frac{1}{3}})+(3x^2\cdot x^{\frac{1}{3}})\\\\+(9x^1\cdot x^{\frac{1}{3}})-(1\cdot x^{\frac{1}{3}})&#10;\\\\\\&#10;4x^{5+\frac{1}{3}}+2x^{4+\frac{1}{3}}-7x^{3+\frac{1}{3}}+9x^{1+\frac{1}{3}}-x^{\frac{1}{3}}

\bf 4x^{\frac{16}{3}}+2x^{\frac{13}{3}}-7x^{\frac{10}{3}}+9x^{\frac{4}{3}}-x^{\frac{1}{3}}&#10;\\\\\\&#10;4\sqrt[3]{x^{16}}+2\sqrt[3]{x^{13}}-7\sqrt[3]{x^{10}}+9\sqrt[3]{x^4}-\sqrt[3]{x}

b)

\bf \cfrac{4x^5+2x^4-7x^3+3x^2+9x-1}{x^{\frac{1}{3}}}\impliedby \textit{distributing the denominator}&#10;\\\\\\&#10;\cfrac{4x^5}{x^{\frac{1}{3}}}+\cfrac{2x^4}{x^{\frac{1}{3}}}-\cfrac{7x^3}{x^{\frac{1}{3}}}+\cfrac{3x^2}{x^{\frac{1}{3}}}+\cfrac{9x}{x^{\frac{1}{3}}}-\cfrac{1}{x^{\frac{1}{3}}}&#10;\\\\\\&#10;(4x^5\cdot x^{-\frac{1}{3}})+(2x^4\cdot x^{-\frac{1}{3}})-(7x^3\cdot x^{-\frac{1}{3}})+(3x^2\cdot x^{-\frac{1}{3}})\\\\+(9x^1\cdot x^{-\frac{1}{3}})-(1\cdot x^{-\frac{1}{3}})

\bf 4x^{5-\frac{1}{3}}+2x^{4-\frac{1}{3}}-7x^{3-\frac{1}{3}}+9x^{1-\frac{1}{3}}-x^{-\frac{1}{3}}&#10;\\\\\\&#10;4x^{\frac{14}{3}}+2x^{\frac{11}{3}}-7x^{\frac{8}{3}}+9x^{\frac{2}{3}}-x^{-\frac{1}{3}}&#10;\\\\\\&#10;4\sqrt[3]{x^{14}}+2\sqrt[3]{x^{11}}-7\sqrt[3]{x^{8}}+9\sqrt[3]{x^{2}}-\frac{1}{\sqrt[3]{x}}



3)

\bf \begin{cases}&#10;f(x)=\sqrt{x}-5x\implies &f(x)x^{\frac{1}{2}}-5x\\\\&#10;g(x)=5x^2-2x+\sqrt[5]{x}\implies &g(x)=5x^2-2x+x^{\frac{1}{5}}&#10;\end{cases}&#10;\\\\\\&#10;\textit{let's multiply the terms from f(x) by each term in g(x)}&#10;\\\\\\&#10;x^{\frac{1}{2}}(5x^2-2x+x^{\frac{1}{5}})\implies x^{\frac{1}{2}}5x^2-x^{\frac{1}{2}}2x+x^{\frac{1}{2}}x^{\frac{1}{5}}

\bf 5x^{\frac{1}{2}+2}-2x^{\frac{1}{2}+1}+x^{\frac{1}{2}+\frac{1}{5}}\implies \boxed{5x^{\frac{5}{2}}-2x^{\frac{3}{2}}+x^{\frac{7}{10}}}&#10;\\\\\\&#10;-5x(5x^2-2x+x^{\frac{1}{5}})\implies -5x5x^2-5x2x+5xx^{\frac{1}{5}}&#10;\\\\\\&#10;-25x^3+10x^2-5x^{1+\frac{1}{5}}\implies \boxed{-25x^3+10x^2-5x^{\frac{6}{5}}}

\bf 5\sqrt{x^5}-2\sqrt{x^3}+\sqrt[10]{x^7}-25x^3+10x^2-5\sqrt[5]{x^6}
6 0
2 years ago
Which equation is an identity?
zloy xaker [14]
3w + 8 - w = 4w - 2(w - 4)
is an identity
3w-w + 8 = 4w - 2w + 8
2w + 8 = 2w + 8
2w - 2w = 8 - 8
0 = 0
zero equal to zero implies that any value of w satisfies the statement 3w + 8 - w = 4w - 2(w - 4) hence it is an identity.
3 0
3 years ago
Read 2 more answers
What is the percent as a fraction in lowest terms
Gwar [14]
1/100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000 etc.
4 0
3 years ago
A= 158.368 ft2<br><br> Radius=<br><br> Diameter=
faltersainse [42]
A=(pi)d
158.368=3.14d
d=50.436
r=25.218
4 0
3 years ago
Other questions:
  • The lifetime of a 2-volt non-rechargeable battery in constant use has a Normal distribution with a mean of 516 hours and a stand
    6·1 answer
  • If the side lengths of a cube are 16 feet how do you write it in exponential form
    7·1 answer
  • How do I make an equation out of a word problem?
    9·2 answers
  • How do you find direct variation? im having trouble understanding this subject
    11·1 answer
  • Hi can u guys help me pla
    7·2 answers
  • What type of graph can show positive correlation, negative correlation, or no correlation?
    9·1 answer
  • LeBron keeps track of events in his life relative to the year he was born. Relative to when he was born, his
    14·1 answer
  • Find the vertex of this function. Is it a maximum or a minimum?<br> y=-3(x + 4)2 + 2
    5·1 answer
  • Two-Variable Statistics:Question 2
    12·1 answer
  • How many wholes are in 11/3?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!