Answer:
<u>Figure A</u>
Step-by-step explanation:
See the attached figure which represents the given options
We are to select the correct pair of triangles that can be mapped to each other using a translation and a rotation about point A.
As shown: point A will map to point L, point R will map to point P and point Q will map to point K.
we will check the options:
<u>Figure A</u>: the triangle ARQ and LPK can be mapped to each other using a translation and a rotation about point A.
<u>Figure B: </u> the triangle ARQ and LPK can be mapped to each other using a translation and a reflection about the line RA.
<u>Figure C:</u> the triangle ARQ and LPK can be mapped to each other using a translation and a reflection about the line QA.
<u>Figure D:</u> the triangle ARQ and LPK can be mapped to each other using a rotation about point A.
So, the answer is figure A
<u>The triangle pairs of figure A can be mapped to each other using a translation and a rotation about point A.</u>
Answer:
I guess the best answer is 10
Step-by-step explanation:
because 20-10 is 10
Answer:
Yes
Step-by-step explanation:
s<30
Put in 28 for s
28<30
Twenty eight is less than 30 so it is a solution
Answer:
The ans is -14 if you use desmos and start "finger counting" the slope of -3, y will equal -14 once it reaches (3,y)
5) The relation between intensity and current appears linear for intensity of 300 or more (current = intensity/10). For intensity of 150, current is less than that linear relation would predict. This seems to support the notion that current will go to zero for zero intensity. Current might even be negative for zero intensity since the line through the points (300, 30) and (150, 10) will have a negative intercept (-10) when current is zero.
Usually, we expect no output from a power-translating device when there is no input, so we expect current = 0 when intensity = 0.
6) We have no reason to believe the linear relation will not continue to hold for values of intensity near those already shown. We expect the current to be 100 for in intensity of 1000.
8) Apparently, times were only measured for 1, 3, 6, 8, and 12 laps. The author of the graph did not want to extrapolate beyond the data collected--a reasonable choice.