If z1 = 6(cos 3pi/2 + isin 3pi/2) and z2 = 2(cos 5pi/6 + isin 5pi/6), then the argument of z1/z2=
2 answers:
Answer:
2pi/3
Step-by-step explanation:
Given are two complex numbers as
![z1=6(cos\frac{3\pi }{2} +isin\frac{3\pi }{2}) \\z2=[tex]We are to find the argument of z1/z2Since both are in mod, argument form we can use Demoivre theorem for complex numbers to find the quotientQuotient = [tex]\frac{z1}{z2} =\frac{6(cos\frac{3\pi }{2} +isin\frac{3\pi }{2})}{2(cos\frac{5\pi }{6} +isin\frac{5\pi }{6})} \\=\frac{6}{2} (2(cos\frac{4\pi }{6} +isin\frac{4\pi }{6})\\=3 (cos\frac{2\pi }{3} +isin\frac{2\pi }{3})](https://tex.z-dn.net/?f=z1%3D6%28cos%5Cfrac%7B3%5Cpi%20%7D%7B2%7D%20%2Bisin%5Cfrac%7B3%5Cpi%20%7D%7B2%7D%29%20%5C%5Cz2%3D%5Btex%5D%3C%2Fp%3E%3Cp%3EWe%20are%20to%20find%20the%20argument%20of%20z1%2Fz2%3C%2Fp%3E%3Cp%3ESince%20both%20are%20in%20mod%2C%20argument%20form%20we%20can%20use%20Demoivre%20theorem%20for%20complex%20numbers%20to%20find%20the%20quotient%3C%2Fp%3E%3Cp%3EQuotient%20%3D%20%3C%2Fp%3E%3Cp%3E%5Btex%5D%5Cfrac%7Bz1%7D%7Bz2%7D%20%3D%5Cfrac%7B6%28cos%5Cfrac%7B3%5Cpi%20%7D%7B2%7D%20%2Bisin%5Cfrac%7B3%5Cpi%20%7D%7B2%7D%29%7D%7B2%28cos%5Cfrac%7B5%5Cpi%20%7D%7B6%7D%20%2Bisin%5Cfrac%7B5%5Cpi%20%7D%7B6%7D%29%7D%20%5C%5C%3D%5Cfrac%7B6%7D%7B2%7D%20%282%28cos%5Cfrac%7B4%5Cpi%20%7D%7B6%7D%20%2Bisin%5Cfrac%7B4%5Cpi%20%7D%7B6%7D%29%5C%5C%3D3%20%28cos%5Cfrac%7B2%5Cpi%20%7D%7B3%7D%20%2Bisin%5Cfrac%7B2%5Cpi%20%7D%7B3%7D%29)
Thus we find that argument = 2pi/3
Answer:
2pi/3
Step-by-step explanation:
I had this same exact question and i got that as the answer.
You might be interested in
Answer:
True
Step-by-step explanation:
Step-by-step explanation:
it's 452.16 because it's the closest estimate
Answer:
$2.70
Step-by-step explanation:
2.25*1.2 = 2.7
depends on the tension and the length of the rope
Answer:
30
Step-by-step explanation:
IJ/HK = IG/HG = 2
IJ/HK = (v+30)/v = 2
v + 30 = 2v
v = 30