Answer:
The probability of picking a black card at random, from a deck with 3 black cards and 7 red ones is 0.3.
Step-by-step explanation:
We will assume that we have 3 black cards and 7 black cards, for a total of 10 cards. Since we are taking one card at random, we can assume that each card is equally likely to be drawn. We have the following event A: The drawn card is a black. We will find the probability of A as counting the number of outcomes that make A to occur and divide it by the total number of possibilities. We are drawing one card, so we have 10 possibilities to be picked. Out of those 10, only 3 cards are black, hence we have 3 possibilites of picking a black card.
Then,
P(A) = 3/10 = 0.3.
Answer:
8
Step-by-step explanation:
According to the Alternating Series Estimation Theorem:
│aₙ₊₁│≤ ε
1 / (4 (n + 1)⁴) ≤ 0.00005
4 (n + 1)⁴ ≥ 20000
(n + 1)⁴ ≥ 5000
n + 1 ≥ 8.41
n ≥ 7.41
n must be an integer, so n ≥ 8.
All you do is look at the first number and see which is greater than you will get your answer glad to help btw if you cant get it it's Maurice
Answer:
Therefore the equation of the line through ( 4 , -8 ) and ( 8 , 5 ) is
13x - 4y = 84.
Step-by-step explanation:
Given:
Let,
point A( x₁ , y₁) ≡ ( 4 ,-8)
point B( x₂ , y₂) ≡ (8 , 5)
To Find:
Equation of Line AB =?
Solution:
Equation of a line passing through Two points A( x₁ , y₁) and B( x₂ , y₂)is given by the formula

Substituting the given values in a above equation we get

Therefore the equation of the line through ( 4 , -8 ) and ( 8 , 5 ) is
13x - 4y = 84.
Answer:
4x(2x+3)
Step-by-step explanation:
Since the common factor of 8x^2 and 12x is 4x, put that out and separate the distributed remaining factors.