Answer:
displacement will be 83km from the marker that reads 249km.
Answer:
You could move something across the Earth with a little push. It would make fuel really efficient on those pathways. You could make a floor that is impossible to walk on. Everybody would just fall without traction.
Explanation:
The magnetic force between two wires is 0.052 N which is attract each other.
We need to know about magnetic force on a current-carrying wire formula to solve this problem. The magnetic force on two wires with same direction of current is
F = μ₀ . I1 . I2 . L / ( 2π . r )
where μ₀ is vacuum permeability (4π×10‾⁷ H/m) F is the magnetic force, I is current, L is the length of wire, r is distance of 2 wires.
From the question above, we know that:
L = 25 m
r = 6 cm
I1 = I2 = 25 A
By substituting the parameter, we get
F = μ₀ . I1 . I2 . L / ( 2π . r )
F = 4π×10‾⁷ . 25 . 25 . 25 / (2π . 0.06)
F = 0.052 N
Hence, the force between two wires is 0.052 N which is attract each other.
Find more on magnetic force at: brainly.com/question/13277365
#SPJ4
Answer:
a) 166.4 s
b) (2.155 × 10⁷) s
Explanation:
15600 KWh for a year,
1 year consists of 365 × 24 hours = 8760 hours.
So, the power consumed in a year for an average household = (Energy/time)
= (15600/8760) = 1.781 KW = 1781 W
a) If the average rate of energy consumed by the house was instead diverted to lift a 1.80 × 10 3 kg car 16.8 m into the air, how long would it take
The power required for this lifting = (mgh/t)
m = 1800 kg
g = 9.8 m/s²
h = 16.8 m
t = ?
P = 1781 W
1781 = (1800×9.8×16.8)/t
t = (296,352/1781)
t = 166.4 s
b) how long would it take to lift a loaded Boeing 747 airplane, with a mass of 4.05 × 10 5 kg , to a cruising altitude of 9.67 km
The power required for this lifting = (mgh/t)
m = 405000 kg
g = 9.8 m/s²
h = 9.67 km = 9670 m
t = ?
P = 1781 W
1781 = (405000×9.8×9670)/t
t = (38,380,230,000/1781)
t = 21,549,820 s = (2.155 × 10⁷) s
Hope this Helps!!!