Answer:
Orion's belt width is 184 light years
Step-by-step explanation:
So we want to find the distance between Alnitak and Mintaka, which is the Orions belts
Let the distance between the Alnitak and Mintaka be x,
Then applying cosine
c²=a²+b²—2•a•b•Cosθ
The triangle is formed by the 736 light-years and 915 light years
Artemis from Alnitak is
a = 736lightyear
Artemis from Mintaka is
b = 915 light year
The angle between Alnitak and Mintaka is θ=3°
Then,
Applying the cosine rule
c²=a²+b²—2•a•b•Cosθ
c² =736² + 915² - 2×, 736×915×Cos3
c² = 541,696 + 837,225 - 1,345,034.1477702404
c² = 33,886.85222975954
c = √33,886.85222975954
c = 184.0838184897 light years
c = 184.08 light years
So, to the nearest light year, Orion's belt width is 184 light years
Answer:
Tyrone
Step-by-step explanation:
In a race the shortest time is the winner.
In this case the ones and the tens place are all the same so we look to the tenths place in which Tyrone has a 0 which is the lowest.
when you didve fractions flip the second one over and multiply
so -8/2 divided by 6/-3 will become
-8/2 times -3/6
then multiple straight across so -8 x -3 = 24
over 6 time 2 = 12
so you get 24/12 which equals 2
1.41 x 10^7 you move the decimal over to the left until you have a number between 1-9
Find, corrrect to the nearest degree, the three angles of the triangle with the given vertices. D(0,1,1), E(-2,4,3), C(1,2,-1)
Sholpan [36]
Answer:
The three angles of the triangle given above are 23, 73 and 84 correct to the nearest degree. The concept of dot product under vectors was applied in solving this problem. The three positions forming the triangle were taken as positions vectors. The Dot product also known as scalar product is a very good way of finding the angle between two vectors. ( in this case the sides of the triangle given above). Below is a picture of the step by step procedure of the solution.
Step-by-step explanation:
The first thing to do is to treat the given positions in space as position vectors which gives us room to perform vector manipulations on them. Next we calculate the magnitude of the position vector which is the square root of the sun of the square of the positions of the vectors along the three respective axes). Then we calculate the dot product. After this is calculated the angle can then be found easily using formula for the dot product.
Thank you for reading this and I hope it is helpful to you.