Let's consider the scenario after each year:
After the zeroth year, the population is: 120 000(1 + 0.04)⁰
After the first year, the population is: 120 000(1 + 0.04)¹
After the second year, the population is: 120 000(1 + 0.04)²
...
Thus, we can find the general rule:
After the nth year, the population is: 120 000(1 + 0.04)ⁿ
And after the 16th year, the population is 120 000(1 + 0.04)¹⁶ = 224 758 (rounded to nearest whole number)
Here are the steps required for Simplifying Radicals:
Step 1: Find the prime factorization of the number inside the radical. Start by dividing the number by the first prime number 2 and continue dividing by 2 until you get a decimal or remainder. Then divide by 3, 5, 7, etc. until the only numbers left are prime numbers. Also factor any variables inside the radical.
Step 2: Determine the index of the radical. The index tells you how many of a kind you need to put together to be able to move that number or variable from inside the radical to outside the radical. For example, if the index is 2 (a square root), then you need two of a kind to move from inside the radical to outside the radical. If the index is 3 (a cube root), then you need three of a kind to move from inside the radical to outside the radical.
Step 3: Move each group of numbers or variables from inside the radical to outside the radical. If there are nor enough numbers or variables to make a group of two, three, or whatever is needed, then leave those numbers or variables inside the radical. Notice that each group of numbers or variables gets written once when they move outside the radical because they are now one group.
Step 4: Simplify the expressions both inside and outside the radical by multiplying. Multiply all numbers and variables inside the radical together. Multiply all numbers and variables outside the radical together.
Shorter version:
Step 1: Find the prime factorization of the number inside the radical.
Step 2: Determine the index of the radical. In this case, the index is two because it is a square root, which means we need two of a kind.
Step 3: Move each group of numbers or variables from inside the radical to outside the radical. In this case, the pair of 2’s and 3’s moved outside the radical.
Step 4: Simplify the expressions both inside and outside the radical by multiplying.
Answer:
Solve for the first variable in one of the equations, then substitute the result into the other equation.
Point Form:
(
0
, 1
)
Equation Form:
x
=
0
, y
=
1
Step-by-step explanation:
Graph.
y
=
−
5/
2
x
−
1
y
=
3
x
−
1
y
=
2/
5
x
+
1
y
=
5/
3
x
+
1
X=-33 y= 10
Leave first row the same multiply 2nd row by -1
-2x+8y=14
2x+2y=26
10y= 40
Y=4
-2x+8(10)=14
-2x+80=14
Answer:
1) A.
2) C.
Step-by-step explanation:
1) 1 pint = 1/2 quarts
15 pints = 15 × 1/2 quarts
15 pints = 15/2 quarts
15 pints = 7 1/2 quarts
2) 1 quarts = 0.95 liters
4 quarts = 0.95 × 4 liters
4 quarts = 3.8 liters