Answer:
Given,
P = (22, 1, 42, 10)
Q = (20, 0, 36, 8)
a. Formula for Euclidean Distance :
distance = ((p1-q1)^2 + (p2-q2)^2 + ... + (pn-qn)^2)^(1/2)
Now,
distance = ( (22-20)^2 + (1-0)^2 + (42 - 36)^2 + (10-8)^2) ) ^(1/2)
=( (2)^2 + (1)^2 + (6)^2 + (2)^2 ) ) ^(1/2)
=(4+1+36+4)^(1/2)
=45^(1/2)
Distance = 6.7082
b.Manhattan distance :
d = |x1 - x2| + |y1 - y2|
d = |22- 20| + |1 - 0|
d = |2| + |1|
Explanation:
C. schedule.
Outlook adds your appointment to your schedule folder.
Answer:
In Python:
def gcd(m,n):
if n == 0:
return m
elif m == 0:
return n
else:
return gcd(n,m%n)
Explanation:
This defines the function
def gcd(m,n):
If n is 0, return m
<em> if n == 0:
</em>
<em> return m
</em>
If m is 0, return n
<em> elif m == 0:
</em>
<em> return n
</em>
If otherwise, calculate the gcd recursively
<em> else:
</em>
<em> return gcd(n,m%n)</em>
<em />
<em>To call the function to calculate the gcd of say 15 and 5 from main, use:</em>
<em>gcd(15,5)</em>
I would say it is considered as science and a bit of maths as its the 'study of abstract machines and automata'