Answer:There are 96 apples in the 12th bag.
Step-by-step explanation:
Firstly, you add the number of apples in the 11 bags.
6+28+16+27+10=87
If the mean number of apples in the 12 bags were 8, the total number of apples are 96.
Using this info, we subtract 87 from 96 to 9.
Hence, there are 9 apples in the 12th bag.
I believe the answer would be 2/4
Answer:
f(2n)-f(n)=log2
b.lg(lg2+lgn)-lglgn
c. f(2n)/f(n)=2
d.2nlg2+nlgn
e.f(2n)/(n)=4
f.f(2n)/f(n)=8
g. f(2n)/f(n)=2
Step-by-step explanation:
What is the effect in the time required to solve a prob- lem when you double the size of the input from n to 2n, assuming that the number of milliseconds the algorithm uses to solve the problem with input size n is each of these function? [Express your answer in the simplest form pos- sible, either as a ratio or a difference. Your answer may be a function of n or a constant.]
from a
f(n)=logn
f(2n)=lg(2n)
f(2n)-f(n)=log2n-logn
lo(2*n)=lg2+lgn-lgn
f(2n)-f(n)=lg2+lgn-lgn
f(2n)-f(n)=log2
2.f(n)=lglgn
F(2n)=lglg2n
f(2n)-f(n)=lglg2n-lglgn
lg2n=lg2+lgn
lg(lg2+lgn)-lglgn
3.f(n)=100n
f(2n)=100(2n)
f(2n)/f(n)=200n/100n
f(2n)/f(n)=2
the time will double
4.f(n)=nlgn
f(2n)=2nlg2n
f(2n)-f(n)=2nlg2n-nlgn
f(2n)-f(n)=2n(lg2+lgn)-nlgn
2nLg2+2nlgn-nlgn
2nlg2+nlgn
5.we shall look for the ratio
f(n)=n^2
f(2n)=2n^2
f(2n)/(n)=2n^2/n^2
f(2n)/(n)=4n^2/n^2
f(2n)/(n)=4
the time will be times 4 the initial tiote tat ratio are used because it will be easier to calculate and compare
6.n^3
f(n)=n^3
f(2n)=(2n)^3
f(2n)/f(n)=(2n)^3/n^3
f(2n)/f(n)=8
the ratio will be times 8 the initial
7.2n
f(n)=2n
f(2n)=2(2n)
f(2n)/f(n)=2(2n)/2n
f(2n)/f(n)=2
Yes, because if you have x=5 and x=10 they are parallel lines to each other.