The deeper down you get, the colder the water is
• Which disinfectant kills the most bacteria
• How much bacteria is transfered to your hand when you touch a tap, door, etc.
• Who has more bacteria, males or females
Answer:
a) Yes
b) Yes
c) Yes
d) Yes
Explanation:
a.
In the exons?
Yes mutant site will be expected. It will transcript-ed as well and it can be a polypeptide depending on the mutation type.
b.
In the intron?
Yes mutant site will be expected. It will be transcript-ed as well and it cannot be a polypeptide
c.
In the promoter?
Yes mutant site will be expected. It will not be transcript-ed and it cannot be a polypeptide
d.
In the intron-exon boundary?
Yes mutant site will be expected. It will be transcript-ed and it cannot be a polypeptide
Answer:
Option (B).
Explanation:
Mixture may be defined as the solution obtained by mixing of two or more substances together. Two different types of mixture are homogeneous mixture and heterogeneous mixture.
Homogeneous mixture may be defined as the mixture that has uniform composition throughout the mixture and cannot be separated easily by physical shaking process. Heterogeneous mixture are the mixtures that has different composition throughout the mixture and can be separated by simple shaking.
Thus, the correct answer is option (B).
The suppression of glycolysis is responsible for a large portion of the control of gluconeogenesis.
Discussion about the statement:
The cytosol is the site of all glycolysis and gluconeogenesis processes. The rate at which glucose is produced in the body is inversely related to the intake of carbohydrates. The suppression of glycolysis is responsible for a large portion of the control of gluconeogenesis.
Fructose 2,6-bisphosphate is an intermediate that plays a crucial role in controlling both glycolysis and gluconeogenesis. This metabolite's presence can promote glycolysis and prevent gluconeogenesis.
Control of Gluconeogenesis and Glycolysis
- At various crucial stages of glycolysis and gluconeogenesis, metabolic control takes place. The catalysts that accelerate each of these stages can be activated or inhibited by outside forces, for example, the quantity of a molecule that comes after. The conversion of glucose and ATP into glucose 6-phosphate is the first controlled step in glycolysis. Keep in mind that hexokinase catalyzes this process.
- High levels of blood glucose, AMP, and low levels of cellular ATP all trigger the activation of hexokinase. In other words, the glycolysis process is enhanced when blood glucose levels are high. Whenever cellular ATP levels are low and AMP levels are high, glycolysis is also increased. Both of these instances show that the cell is short on energy and may be directly influenced to create additional energy.
Learn more about glycolysis here:
brainly.com/question/14076989
#SPJ4