Since x<span> is on the right-hand side of the </span>equation<span>, switch the sides so it is on the left-hand side of the </span>equation<span>. </span><span>0.04<span>x2</span>−8.504x+25302=c
</span>Simplify the quadratic and set<span> the right side equal to </span><span>0. </span><span>0.04<span>x2</span>−8.504x+25302−c=0
</span>Use the standard form of the quadratic <span>(<span><span>a<span>x2</span>+bx+c</span>)</span></span><span> to find </span><span>a,</span><span>b,</span><span> and </span>c<span> for this quadratic. </span><span>a=0.04,</span><span>b=−8.504,</span><span>c=25302−1c
</span>Use the quadratic formula<span> to find the </span>solutions<span>. </span><span>x=<span>−b ± </span></span>√<span><span> <span><span>b2</span>−4ac /</span> </span><span>2a
</span></span>Substitute in the values of <span><span>a=0.04</span>,</span><span><span>b=−8.504</span>,</span><span> and </span><span><span>c=25302−1c</span>. </span>x=<span>−(−8.504) ±</span>√<span><span>(−8.504<span>)2</span>−4(0.04)(25302−1c)/</span><span>2(0.04) </span></span> <span>Simplify. </span>x=<span>8.504 ±</span>√<span><span>(−8.504<span>)2</span>−4(0.04)(25302−1c)/</span><span>2(0.04) </span></span> Simplify the section inside the radical<span>. </span>x=<span>8.504 ± </span>√<span><span><span>−3976.001984+0.16c</span>/</span><span>2(0.04) </span></span> Simplify the denominator<span> of the </span>quadratic formula<span>. </span>x=<span>8.504 ±</span>√<span><span>−3976.001984+0.16c/</span>0.08 </span>