Answer:
B. NIDS
Explanation:
From the question we are informed about A network manager is interested in a device that watches for threats on a network but does not act on its own, and also does not put a strain on client systems. The BEST device to meet these requirements is NIDS. Network intrusion detection system known as "NIDS" can be regarded as a system that can attempt in detection of hacking activities as well as denial of attack on computer network. It can monitor network traffic and can as well detect malicious activities through identification of suspicious patterns in any incoming packet.
Can you explain more please??!
Answer:
Parameter
Explanation:
q: When an application contains just one version of a method, you can call the method using a(n) ____ of the correct data type.
a: Parameter
Introductory program; just a static picture of a colored triangle.
Shows how to use GLUT.
Has minimal structure: only main() and a display callback.
Uses only the default viewing parameters (in fact, it never mentions viewing at all). This is an orthographic view volume with bounds of -1..1 in all three dimensions.
Draws only using glColor and glVertex within glBegin and glEnd in the display callback.
Uses only the GL_POLYGON drawing mode.
Illustrates glClear and glFlush.
triangle.cpp
// A simple introductory program; its main window contains a static picture
// of a triangle, whose three vertices are red, green and blue. The program
// illustrates viewing with default viewing parameters only.
#ifdef __APPLE_CC__
#include
#else
#include
#endif
// Clears the current window and draws a triangle.
void display() {
// Set every pixel in the frame buffer to the current clear color.
glClear(GL_COLOR_BUFFER_BIT);
// Drawing is done by specifying a sequence of vertices. The way these
// vertices are connected (or not connected) depends on the argument to
// glBegin. GL_POLYGON constructs a filled polygon.
glBegin(GL_POLYGON);
glColor3f(1, 0, 0); glVertex3f(-0.6, -0.75, 0.5);
glColor3f(0, 1, 0); glVertex3f(0.6, -0.75, 0);
glColor3f(0, 0, 1); glVertex3f(0, 0.75, 0);
glEnd();
// Flush drawing command buffer to make drawing happen as soon as possible.
glFlush();
}
// Initializes GLUT, the display mode, and main window; registers callbacks;
// enters the main event loop.
int main(int argc, char** argv) {
// Use a single buffered window in RGB mode (as opposed to a double-buffered
// window or color-index mode).
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
// Position window at (80,80)-(480,380) and give it a title.
glutInitWindowPosition(80, 80);
glutInitWindowSize(400, 300);
glutCreateWindow("A Simple Triangle");
// Tell GLUT that whenever the main window needs to be repainted that it
// should call the function display().
glutDisplayFunc(display);
// Tell GLUT to start reading and processing events. This function
// never returns; the program only exits when the user closes the main
// window or kills the process.
glutMainLoop();
}