The answer is plants. Plants are at the start of the food chain :)
Sometimes, the dark spots on the marshmallow can fall off of the marshmallow. This means that, the system does not need to include the pieces that fell when determining the mass before and after.
Answer:
The plant cell wall is strengthened by the molecular structure of cellulose. Cellulose is made up of ß-glucose arranged upside down, this arrangement aided hydrogen bonds between the hydrogen ions of the hydroxyl group and oxygen of the of the ring of same betta -glucose.
The aggregation of the hydrogen bonds give bundles of strong tensile strength of cellulose called the microfibrils (of 60-70 celluose molecules).They are held together in bundled called fibers.T<u>hese is the source of plant cell walls strength.
</u>
<u />
Collagen is the main extracellur matrix (EM) in animal cells.It is a glycoprotein made up of 25%of body protein of animals.Each collagen molecule is made of helix shaped ,three polypeptide chains, wound around each other to form<u> triple helix.</u>The bonds holding helix together are hydrogen and covalent bonds.
Each triple helix is attached to adjacent collagen molecule, parallel to it. The covalent bonds formed a cross link which held the collagen molecules together forming FIBRILS. This gives flexibility to collagen, while maitaing strong tensile strength. This is what is responsible for the structural strength of cell membrane
.
.The EM,is futher reinforced with carbohydrate molecules(proteoglycans) which<u> aided in water movements by osmosis following sodium movements into the matrix.</u>
Answer:
The animal cell will shrink due to loss of water to the external solution
Explanation:
An isotonic solution is that solution which has equal concentration with its external environment. Hence, no net movement of water occurs in an isotonic solution since there is no concentration gradient. Therefore, if an animal cell is placed in an isotonic solution at first, no net movement of water occurs because the intracellular and extracellular concentrations are at equilibrium.
However, if more solutes are added to the solution, it makes the solution HYPERTONIC to the cell i.e greater in concentration. This creates an osmotic gradient and causes water to move out of the animal cell into the solution in accordance to osmotic principles (movement of water from a low concentration of solute to high concentration of solute). This causes the animal cell to likely SHRINK.