this is not a answer but look up dezmos and it will graph it for you
Y = |x² - 3x + 1|
y = x - 1
|x² - 3x + 1| = x - 1
|x² - 3x + 1| = ±1(x - 1)
|x² - 3x + 1| = 1(x - 1) or |x² - 3x + 1| = -1(x - 1)
|x² - 3x + 1| = 1(x) - 1(1) or |x² - 3x + 1| = -1(x) + 1(1)
|x² - 3x + 1| = x - 1 or |x² - 3x + 1| = -x + 1
x² - 3x + 1 = x - 1 or x² - 3x + 1 = -x + 1
- x - x + x + x
x² - 4x + 1 = -1 or x² - 2x + 1 = 1
+ 1 + 1 - 1 - 1
x² - 4x + 1 = 0 or x² - 2x + 0 = 0
x = -(-4) ± √((-4)² - 4(1)(1)) or x = -(-2) ± √((-2)² - 4(1)(0))
2(1) 2(1)
x = 4 ± √(16 - 4) or x = 2 ± √(4 - 0)
2 2
x = 4 ± √(12) or x = 2 ± √(4)
2 2
x = 4 ± 2√(3) or x = 2 ± 2
2 2
x = 2 ± √(3) or x = 1 ± 1
x = 2 + √(3) or x = 2 - √(3) or x = 1 + 1 or x = 1 - 1
x = 2 or x = 0
y = x - 1 or y = x - 1 or y = x - 1 or y = x - 1
y = (2 + √(3)) - 1 or y = (2 - √(3)) - 1 or y = 2 - 1 or y = 0 - 1
y = 2 - 1 + √(3) or y = 2 - 1 - √(3) or y = 1 or y = -1
y = 1 + √(3) or y = 1 - √(3) (x, y) = (2, 1) or (x, y) = (0, -1)
(x, y) = (2 ± √(3), 1 ± √(3))
The solution (0, -1) can be made by one function (y = x - 1) while the solution (2 ± √(3), 1 ± √(3)) can be made by another function (y = |x² - 3x + 1|). So the solution (2, 1) can be made by both functions, making the two solutions equal.
The answer is 14. Hope this helped
Check the picture below.
includes 2, notice, it doesn't go below 2 over the y-axis, and then it keeps on going up. So, the range is from +2 onwards.