![h(x)=(f\circ g)(x)\\\\h(x)=\sqrt[3]{x+3};\ f(x)=\sqrt[3]{x+2}\\\\h(x)=\sqrt[3]{x+1+2}=\sqrt[3]{(x+1)+2}=\sqrt[3]{g(x)+2}\to \boxed{g(x)=x+1}](https://tex.z-dn.net/?f=h%28x%29%3D%28f%5Ccirc%20g%29%28x%29%5C%5C%5C%5Ch%28x%29%3D%5Csqrt%5B3%5D%7Bx%2B3%7D%3B%5C%20f%28x%29%3D%5Csqrt%5B3%5D%7Bx%2B2%7D%5C%5C%5C%5Ch%28x%29%3D%5Csqrt%5B3%5D%7Bx%2B1%2B2%7D%3D%5Csqrt%5B3%5D%7B%28x%2B1%29%2B2%7D%3D%5Csqrt%5B3%5D%7Bg%28x%29%2B2%7D%5Cto%20%5Cboxed%7Bg%28x%29%3Dx%2B1%7D)
-----------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------

Answer:
10+11g
Step-by-step explanation:
Answer:
28 km
Step-by-step explanation:
Answer:
f(x) = 2(x + 3)²
Step-by-step explanation:
Parent Graph: f(x) = a(bx - h)² + k
<em>a</em> is vertical shrink/stretch
<em>b</em> is horizontal shrink/stretch
<em>h</em> is horizontal movement left/right
<em>k</em> is vertical movement up/down
<em>h, k</em> is vertex
Step 1: Define variables
h = -3
k = 0
a = 2
Step 2: Write quadratic
f(x) = 2(x + 3)²