Given:
The first two terms in an arithmetic progression are -2 and 5.
The last term in the progression is the only number in the progression that is greater than 200.
To find:
The sum of all the terms in the progression.
Solution:
We have,
First term : 
Common difference : 


nth term of an A.P. is

where, a is first term and d is common difference.

According to the equation,
.



Divide both sides by 7.

Add 1 on both sides.

So, least possible integer value is 30. It means, A.P. has 30 term.
Sum of n terms of an A.P. is
![S_n=\dfrac{n}{2}[2a+(n-1)d]](https://tex.z-dn.net/?f=S_n%3D%5Cdfrac%7Bn%7D%7B2%7D%5B2a%2B%28n-1%29d%5D)
Substituting n=30, a=-2 and d=7, we get
![S_{30}=\dfrac{30}{2}[2(-2)+(30-1)7]](https://tex.z-dn.net/?f=S_%7B30%7D%3D%5Cdfrac%7B30%7D%7B2%7D%5B2%28-2%29%2B%2830-1%297%5D)
![S_{30}=15[-4+(29)7]](https://tex.z-dn.net/?f=S_%7B30%7D%3D15%5B-4%2B%2829%297%5D)
![S_{30}=15[-4+203]](https://tex.z-dn.net/?f=S_%7B30%7D%3D15%5B-4%2B203%5D)


Therefore, the sum of all the terms in the progression is 2985.
Answer:

Step-by-step explanation:

Linear Equation: 15m+10=w
15 pages written for every month for 5 months plus the 10 pages she has already written is equal to the total number of pages written in 5 months.
m= number months written. In this case, it is 5 months.
w= number of pages written in 5 months
15(5)+10=w
75+10=w
85 pages written=w
Carla will have written 85 pages in 5 months.
Answer:
43/4 = 10.25 which rounds to the nearest whole number of 10 total carts
Step-by-step explanation:
Please see the attached picture and I hope I have given the right answer.