Answer:
There are 26 possible way to determine two distinct integers whose sum is 27.
Step-by-step explanation:
To find : The number of ways a computer can randomly generate one or more such integers from 1 through 30. Two distinct integers whose sum is 27.
Solution :
We have given the numbers from 1,2,3,4......,29,30.
In order to get two distinct numbers having the sum 27,
There are the possibilities :
1+26=27
2+25=27
3+24=27
......
24+3=27
25+2=27
26+1=27
The maximum number taken is 26.
So, There are 26 possible way to determine two distinct integers whose sum is 27.
-11x² + 2x = 10
-11x² + 2x - 10 = 10 - 10
-11x² + 2x - 10 = 0
x = <u>-(2) +/- √((2)² - 4(-11)(-10))</u>
2(-11)
x = <u>-2 +/- √(4 - 440)</u>
-22
x = <u>-2 +/- √(-436)
</u> -22<u>
</u>x = <u>-2 +/- 2i√(109)
</u> -22
x = <u>-2 + 2i√(109</u>) x = <u>-2 - 2i√(109)</u>
-22 -22
x = ¹/₁₁ - ¹/₁₁i√(109) x = ¹/₁₁ + ¹/₁₁i√(109)
<u />
Answer: 1 over 12
Step-by-step explanation:
F(2)=-29-f(1) = -29-(-16)=-13