Answer:The claim is correct
Explanation:Assume the given triangle ABCperimeter of triangle ABC = AB + BC + CA ............> I
Now, we have:D is the midpoint of AB, this means that:
AD = DB = (1/2) AB ..........> 1E is the midpoint of AC, this means that:
AE = EC = (1/2) AC ...........> 2DE is the midsegment in triangle ABC, this means that:
DE = (1/2) BC ...........> 3perimeter of triangle ADE = AD + DE + EA
Substitute in this equation with the corresponding lengths in 1,2 and 3:perimeter of triangle ADE = (1/2) AB + (1/2) BC = (1/2) AC
perimeter of triangle ADE = (1/2)(AB+BC+AC) .........> IIFrom I and II, we can prove that:perimeter of triangle ADE = (1/2) perimeter of triangle ABC
Which means that:perimeter of midsegment triangle is half the perimeter of the original triangle.
Hope this helps :)
Well 3 x 7 + 9= 30
so 30<span> divided by 36 = 1.2
answer: 1.2</span>
1500 is your answer hope it helps
Answer:
Step-by-step explanation:
Answer:
Please be more clear and I might be able to help
Step-by-step explanation: