1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lapo4ka [179]
3 years ago
6

Which of the numbers below could be terms in the sequence an = 3n + 16? Check all that apply.

Mathematics
2 answers:
Mumz [18]3 years ago
5 0
It should be A. 46 because 46-16=30 which means 3•10+16=46. So it is A
Verdich [7]3 years ago
5 0

Answer:

answer is 46, 61, and 64.

Step-by-step explanation:

You might be interested in
Ax+16=b−3x what is a= and what does b= ?
Vlad1618 [11]

Answer:

Slope=4

x−intercept=−  

4

16

​  

=−4

b−intercept=  

1

16

​  

=16.0000

Step-by-step explanation:

7 0
3 years ago
What is the name of the shapes A,B,D
artcher [175]

Answer:

i believe the bottom is a <em>irregular quadrilateral </em>and the first one is a <em>parallelogram </em>

Step-by-step explanation:

4 0
2 years ago
Use this list of Basic Taylor Series and the identity sin2θ= 1 2 (1−cos(2θ)) to find the Taylor Series for f(x) = sin2(3x) based
notsponge [240]

Answer:

The Taylor series for sin^2(3 x) = - \sum_{n=1}^{\infty} \frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}, the first three non-zero terms are 9x^{2} -27x^{4}+\frac{162}{5}x^{6} and the interval of convergence is ( -\infty, \infty )

Step-by-step explanation:

<u>These are the steps to find the Taylor series for the function</u> sin^2(3 x)

  1. Use the trigonometric identity:

sin^{2}(x)=\frac{1}{2}*(1-cos(2x))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(2(3x)))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(6x))

   2. The Taylor series of cos(x)

cos(y) = \sum_{n=0}^{\infty}\frac{-1^{n}y^{2n}}{(2n)!}

Substituting y=6x we have:

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

   3. Find the Taylor series for sin^2(3x)

sin^{2}(3x)=\frac{1}{2}*(1-cos(6x)) (1)

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!} (2)

Substituting (2) in (1) we have:

\frac{1}{2} (1-\sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!})\\ \frac{1}{2}-\frac{1}{2} \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

Bring the factor \frac{1}{2} inside the sum

\frac{6^{2n}}{2}=9^{n}2^{2n-1} \\ (-1^{n})(9^{n})=(-9^{n} )

\frac{1}{2}-\sum_{n=0}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

Extract the term for n=0 from the sum:

\frac{1}{2}-\sum_{n=0}^{0}\frac{-9^{0}2^{2*0-1}x^{2*0}}{(2*0)!}-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \frac{1}{2} -\frac{1}{2} -\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ 0-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ sin^{2}(3x)=-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

<u>To find the first three non-zero terms you need to replace n=3 into the sum</u>

sin^{2}(3x)=\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \sum_{n=1}^{3}\frac{-9^{3}2^{2*3-1}x^{2*3}}{(2*3)!} = 9x^{2} -27x^{4}+\frac{162}{5}x^{6}

<u>To find the interval on which the series converges you need to use the Ratio Test that says</u>

For the power series centered at x=a

P(x)=C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+...+ C_{n}(x-a)^{n}+...,

suppose that \lim_{n \to \infty} |\frac{C_{n}}{C_{n+1}}| = R.. Then

  • If R=\infty, the the series converges for all x
  • If 0 then the series converges for all |x-a|
  • If R=0, the the series converges only for x=a

So we need to evaluate this limit:

\lim_{n \to \infty} |\frac{\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}}{\frac{-9^{n+1}2^{2*(n+1)-1}x^{2*(n+1)}}{(2*(2n+1))!}} |

Simplifying we have:

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |

Next we need to evaluate the limit

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |\\ \frac{1}{18x^{2} } \lim_{n \to \infty} |-(n+1)(2n+1)}|}

-(n+1)(2n+1) is negative when n -> ∞. Therefore |-(n+1)(2n+1)}|=2n^{2}+3n+1

You can use this infinity property \lim_{x \to \infty} (ax^{n}+...+bx+c) = \infty when a>0 and n is even. So

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } | \\ \frac{1}{18x^{2}} \lim_{n \to \infty} 2n^{2}+3n+1=\infty

Because this limit is ∞ the radius of converge is ∞ and the interval of converge is ( -\infty, \infty ).

6 0
3 years ago
Can someone PLEASEEE answer this for me I really need help :(
Ilia_Sergeevich [38]

Answer: 850

Step-by-step explanation:

if  250 miles takes 5 gallons then 7 gallons may give you about 850.

It looks like your just adding on 2 more.

7 0
3 years ago
Read 2 more answers
Write p divided 6 as an algebraic expression​
Crazy boy [7]

Answer:

The algebraic expression that would show the "p divided by 6" is a fraction which shows the dividend, p, as the numerator and the divisor, 6, as the denominator. In symbols, this can be written as follows: p/6

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • Write a recursive definition for the sequence 14, 10, 6, 2,… Common difference is 4 what do I do next?
    14·2 answers
  • The cat walks all over a problem on Syria's math homework with muddy feet. All Sofia can see is the answer -- 267. Sofia remembe
    8·1 answer
  • Please help with this
    7·2 answers
  • Solve the equation for y (picture below)<br> Please show work and solve as much as you can
    11·1 answer
  • What is the area of a circle with a radius of 6 inches?
    12·1 answer
  • Find the average rate of change from x = 2<br> to x =4
    11·1 answer
  • A paper hat is folded into the shape of a kite, as shown.
    7·1 answer
  • What is the rate of change in the equation y=8x+6?
    14·1 answer
  • A triangle has side lengths of (2.4k-7.4) centimeters, (6.3k-2.2) centimeters and (6.8m+2.4) centimeters. which expression repre
    5·1 answer
  • Finding missing angles
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!