Answer:
Explanation:
The genes in DNA encode protein molecules, which are the "workhorses" of the cell, carrying out all the functions necessary for life. For example, enzymes, including those that metabolize nutrients and synthesize new cellular constituents, as well as DNA polymerases and other enzymes that make copies of DNA during cell division, are all proteins.
In the simplest sense, expressing a gene means manufacturing its corresponding protein, and this multilayered process has two major steps. In the first step, the information in DNA is transferred to a messenger RNA (mRNA) molecule by way of a process called transcription. During transcription, the DNA of a gene serves as a template for complementary base-pairing, and an enzyme called RNA polymerase II catalyzes the formation of a pre-mRNA molecule, which is then processed to form mature mRNA (Figure 1). The resulting mRNA is a single-stranded copy of the gene, which next must be translated into a protein molecule.
There are all sorts of ways to reconstruct the history of life on Earth. Pinning down when specific events occurred is often tricky, though. For this, biologists depend mainly on dating the rocks in which fossils are found, and by looking at the “molecular clocks” in the DNA of living organisms.
There are problems with each of these methods. The fossil record is like a movie with most of the frames cut out. Because it is so incomplete, it can be difficult to establish exactly when particular evolutionary changes happened.
Modern genetics allows scientists to measure how different species are from each other at a molecular level, and thus to estimate how much time has passed since a single lineage split into different species. Confounding factors rack up for species that are very distantly related, making the earlier dates more uncertain.
These difficulties mean that the dates in the timeline should be taken as approximate. As a general rule, they become more uncertain the further back along the geological timescale we look. Dates that are very uncertain are marked with a question mark.
Answer:
B) If two non functional copies are inherited, the pea will be wrinkeld.
Explanation:
The gene for starch debranching is one of the genes that regulate more than one genetic trait. The starch debranching gene also regulates the seed shape in peas. The gene has two alleles. The allele B is completely dominant over allele "b" with respect to seed shape. Both homozygous and heterozygous dominant genotypes (BB and Bb) produce smooth seeds while homozygous recessive genotype (bb) imparts wrinkled shape to the seeds.