The volume of a sphere:

r - the radius
The diameter is twice the radius.
![d=36 \ in \\ r=\frac{36}{2} \ in = 18 \ in \\ \\ V=\frac{4}{3} \pi \times 18^3=\frac{4}{3}\pi \times 5832=\frac{23328}{3} \pi=7776\pi \ [in^3]](https://tex.z-dn.net/?f=d%3D36%20%5C%20in%20%5C%5C%0Ar%3D%5Cfrac%7B36%7D%7B2%7D%20%5C%20in%20%3D%2018%20%5C%20in%20%5C%5C%20%5C%5C%0AV%3D%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20%5Ctimes%2018%5E3%3D%5Cfrac%7B4%7D%7B3%7D%5Cpi%20%5Ctimes%205832%3D%5Cfrac%7B23328%7D%7B3%7D%20%5Cpi%3D7776%5Cpi%20%5C%20%5Bin%5E3%5D)
The exact volume of the sphere is 7776π in³.
Answer:
2(x + y)² - 9( x + y ) -5 = 0
⇒2(x + y)² - 10 (x+y) +1(x+y) -5 = 0
⇒2(x+y)(x + y - 5 ) + 1(x + y -5 ) = 0
taking (x + y -5 ) common ,
⇒(x + y -5 )[2(x + y) + 1] =0
⇒(x + y -5)(2x + 2y +1) =0
hope , you got this
Given that figure A with radius of 2 inches is dilated to form figure B, the radius of B will be given by:
Radius B=(radius A)×(scale factor)
but
scale factor=4
thus
Radius of B will be:
2×4
=8 inches